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Preface 

Systems research is increasingly being used to investigate and analyse a 
wide range of real-world problems, including agricultural production systems. 
Given a valid, verified model of a particular system, optimisation is a logical 
complement to the modelling exercise. Usually, this takes the form of 
maximisation of some measure of the system's performance, such as total 
production or economic gross margin. This book deals with the practical 
application of optimisation techniques, particularly evolutionary algorithms, to 
the study and management of these agricultural systems. It should prove useful 
to practitioners applying these methods to the optimisation of agricultural or 
natural systems, and would also be suited as a text for systems management, 
applied modelling, or operations research university subjects. Basic knowledge 
in systems research, along with some computing and programming skills, are 
assumed. 

Models of agricultural systems range widely on both temporal and spatial 
scales. Farm-level systems have typically been investigated, but models also 
range out to regional, industry and national scales. Short-term (within-year) 
profitability and cash-flow issues are common, but the time-frame can be 
extended to a hundred years or more, to investigate sustainability and long-term 
effects. In addition to the 'direct' economic maximisation of agricultural 
systems, optimisation methods have also seen use in the calibration of internal 
model parameters to observed data, maximising the rate of genetic gain in 
livestock, in agricultural allocation and scheduling problems, and in the 
analysis of sustainability issues in natural systems management. 

Agricultural models present a number of difficulties with regard to 
optimisation. These problems include complex relationships which are not 
conducive to the simpler forms of economic modelling (such as linear 
programming); biological variability, which usually requires a stochastic 
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model; the identification of suitable variables to optimise; the high degree of 
complexity in these systems, which translates to high dimensionality of the 
search-space; frequent interactions between the effects of the various 
(assumedly independent) management options; cliffs and discontinuities in the 
search-space (where the system is over-utilised, and 'crashes' both biologically 
and economically); and the presence of multiple local optima, caused by very 
different combinations of management options having similar economic 
outcomes. 

Any selected optimisation method is required to deal with all these 
problems, and reliably return the solution for the global optimum (or a value 
suitably close to this). Generally, evolutionary algorithms (including genetic 
algorithms, evolution strategies, and hybrid methods) have proven superior 
for this task. Depending on the algorithm and the type and usage of the 
model, some problems do remain, however evolutionary algorithms contain 
a number of advantageous features which largely circumvent these. For the 
alternate optimisation techniques (including gradient and direct-search 
methods, simulated annealing, and the tabu search strategy), these 
difficulties often prove insurmountable. Published studies on the application 
of all these methods to agricultural systems are contrasted and compared, in 
terms of quality of the final solution and rates of convergence. 

Finally, the listed applications are drawn together into an overview, and 
the more successful genetic algorithm methodologies and parameters are 
discussed. This identifies combinations which are likely to provide robust 
performance, given any similar future system being investigated. Directions 
of profitable future research are also outlined. 
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Chapter 1 

RATIONALE FOR SYSTEMS MODELLING 

This introductory chapter outlines the documented benefits of the 
systems research approach, and the steps and methodologies typically used 
here. Potential discrepancies between the modelled and real-world systems 
are discussed, along with interpretational issues. The various types of 
models used for the study and optimisation of agricultural systems are 
outlined. These include the widely-used and much published linear and 
mathematical programming methods, which however do tend to be 
constrained representations of the real world, and can give poor results. As 
an alternative approach, general (unstructured) simulation models are 
promoted as a more flexible and realistic method of representing the system 
being modelled. 

1. INTRODUCTION 

With the advent of more powerful computers, the science or art of 
simulation modelling has become more commonplace. Simulation of a 
system is the construction and operation of a model which is a valid 
representation of the system. Physical models have long been used to 
investigate a variety of problems. For example, the effectiveness of design 
in boats and aircraft has been tested by the behaviour of smaller-scale 
models in tanks or wind-tunnels. Also, erosion and sedimentation models of 
proposed harbour and canal developments are commonly used, with some of 
these physical models covering hundreds of square metres. Despite the cost 
involved, it is obviously advantageous to gain an understanding of potential 
problems and solutions prior to spending millions of dollars on such a 
development. 



www.manaraa.com

2 EVOLUTIONARY ALGORITHMS & AGRICULTURAL SYSTEMS 

Computer simulation models of agricultural systems are essentially the 
same. They are a representation or abstract of reality, expressed in 
mathematical and logical terms. As such, they can never fully represent reality, 
and must be imperfect. The only perfect model is reality itself. For example, 
the best pasture production model, taking account of rainfall, runoff, through
drainage, water use efficiency, humidity, solar radiation, soil fertility, mobile 
nutrients, inter- and intra-species competition, etc. will still not produce 
accurate results if excessive rainfall produces a flood which submerges the 
pasture for a period of time (unless the modeller has allowed for this 
occurrence). Despite these shortcomings, it is the intention of most modellers 
to construct a model which will simulate reality as well as is possible, and 
which may be assumed valid under most circumstances. In particular, the 
model should work well in situations similar to those where the modelled 
results will be extended to and used in the real-world system. 

The logistics and mechanics of model construction are complex, covering 
problem definition; construction of systems diagrams; selection and estimation 
of key parameters, pathways and relationships; data availability; programming 
approach; hardware and software requirements; and verification and validation. 
Figure 1 represents a typical systems diagram (from our series of simulation 
studies, Mayer 2000) of an agricultural system, from which a systems model 
can, and has, been built. These systems research methodologies have been well 
described in a range of introductory and advanced texts (Dent and Blackie 
1979, Law and Kelton 1982, Bratley et al. 1987, Kleijnen 1987, Ripley 1987). 
It is not the intention here to review this diverse field, but rather to consider 
applications of agricultural models from a practical point of view. 

The development and proving of a systems model can be lengthy and 
expensive, with no guarantee of success, so a critical analysis of suggested 
applications should be undertaken prior to its commencement (Bennett and 
MacPherson 1985). In systems where a valid model can beneficially be 
constructed, a range of advantageous uses exists, including -
1. Models can be used for manipulations and experiments which would be 

impractical, too expensive, too lengthy, or impossible in the real world. 
When a verified, valid model has been constructed, a wide range of 
experiments can be conducted at very minimal cost compared to 
traditional agricultural research. 

2. In the real system, complex interactions often exist. Multiple runs of a 
model can be used to identify and quantify these, further justifying this 
approach as an alternative to reductionist research which may only 
consider one dimension of the overall problem. 
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Figure 1. Systems schematic of a beef property model for northern Australia. 

3 

3. The best management strategies can be identified rapidly, via 
optimisation. This, and probably also a number of predicted near-optimal 
strategies, can then be field-tested. 

4. The long-tenn effects of options can be evaluated. In some cases, 
significant results may only appear after a number of years, and a 
traditional-style experiment may be written off prior to this. 

5. In modelling, the researcher has control over environmental as well as 
experimental conditions, and this can be useful in detennining long-tenn 
strategies. Pre-detennined meteorological conditions can be tested, as 
opposed to the conditions which naturally and variably occur each year in 
agricultural experiments. 

6. Hypothetical and exploratory situations such as climate change can be 
investigated, to prepare for such eventualities. The overall stability of the 
system under such conditions can be researched. 

7. An insight is obtained into the relative importance of the variables and 
factors of the system. Unimportant variables can subsequently be 
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ignored, and the key variables and relationships can be more accurately 
estimated from research, if required. 
One implicit assumption of the modelling approach is that any results 

obtained via the model will also apply in the real-world system, i.e., the 'best' 
way to manage the modelled agricultural system will also be the best way to 
run this system. This does not always occur - for example, with the modelled 
autonomous orchard sprayer, Cho and Lee (2000) simulated a 68% 
improvement over the baseline scenario. However, this did not translate across 
to the real world, due to engineering problems including tyre slip and 
hydraulics response time. If these were solved, we would then expect the 
simulated result to apply. Conversely, Davies et al. (2000) identified an 
optimal combination of additives for silage preparation which outperformed the 
accepted industry standards, both in the model and then when applied to the 
real world. As any model is an abstraction of reality, perfect agreement with 
the modelled system will never be obtained. However, if the model is verified 
and validated for the purposes of the study, then the degree of difference should 
be small, and managers can confidently take modelled results across into the 
real world. 

'Agricultural Systems' and other appliedjoumals have published numerous 
examples of the use of models, both explicit (the study is defined as a 
simulation, with the usual terminology) and implicit (where logical or 
knowledge-based descriptions of the studied system form an analytical model 
for solution). In many of these examples, the model is used to analyse and 
predict the likely effects of managerial changes, to improve or optimise some 
measure of production, profitability or overall utility. 

2. TYPES OF SYSTEMS MODELS 

In 1826 von ThUnen outlined a simplified model of an agricultural 
production area (Stevens 1968). Since this time agricultural economists have 
modelled and optimised numerous systems (Judge et al. 1977). In agriculture 
alone, 'the literature (of optimisation theory and methods) is indeed by now so 
vast as to preclude a comprehensive survey' (Day 1977). This statement was 
made over twenty years ago, when Day and Sparling (1977) tabulated around 
350 individual references, and many more have appeared since. The vast 
majority of these types of studies use the broad field of mathematical 
programming, including linear programming, integer programming, quadratic 
programming, nonlinear programming, and dynamic programming. 
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MATHEMATICAL PROGRAMMING METHODS 

In these studies, the modelled system is represented by a framework of 
mathematical equations. Whilst theoretically elegant and conducive to 
solution, the application of these methods to large, complex real-world systems 
has definite problems. Mathematical programming methods generally rely on 
smooth (or even linear) functions to adequately describe the system. They have 
difficulties dealing with extreme behaviour and interactions between variables 
(Gabbert et al. 1991, Michalewicz and Fogel 2000), as well as coping with 
dynamic interactions between the system's key variables over time (Hayes et 
al. 1997). Linear programming models can be iteratively re-formulated and 
re-run to accommodate nonlinearities and dynamic problems (King and Logan 
1964), but this is obviously inefficient. Most agricultural systems are spatially 
heterogenous, yet these methods assume homogeneity within defined regions 
(MacKinnon 1976). The almost infinite number of regions required to satisfy 
this cannot be handled computationally, so simplifying assumptions often need 
to be made (Lazarus and Dixon 1984, Honghai 1987) or special features 
incorporated to make the problem tractable (pratt et al. 1986). Also, the 
smooth nature of nonlinear programming makes them prone to finding local 
rather than global optima (Kuo et al. 1992, Messine et al. 1996). In practical 
applications with simulation models, mathematical programming methods are 
realistically limited to problems of only moderate size and complexity 
(Michalewicz 1996). In evaluating rangeland investment decisions via 
nonlinear programming, Lambert and Harris (1990) assumed homogeneity 
across a ranch of 78 000 acres, and still required a supercomputer to obtain a 
solution. On a dynamic crop irrigation problem using linear programming, de 
Juan et al. (1999) experienced difficulties handling the complexities of multiple 
farms and paddocks. 

Regarding agricultural systems models, increasingly more researchers are 
finding that mathematical programming methods are not well suited. A 
summary of these studies, along with the optimisation method that was 
successfully adopted, is listed in Table 1. Only one of these studies gives a 
direct comparison of optimisation results - in the English Channel fisheries, 
Mardle and Pascoe (2000) reported that their genetic algorithm found an 
optimal combination which was 4.3% higher than the linear programming 
solution. 

Overall, the usefulness of mathematical programming techniques appears 
limited by the restrictiveness of their formulation, which is required to facilitate 
computational solution (Gill et al. 1981). In some situations these methods 
contribute adequate strategies, but 'there are many cases where these 
assumptions lead to very poor (high cost) solutions to the real problem' 
(Gabbert et al. 1991, p. 430). 
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Table 1. Agricultural systems studies where mathematical programming methods could not be 
successfu\l~ utilised. 

Reference Agricultural system Unsuccessful maths. Optimisation 
programming method method adopted 

Anneve1ink Greenhouse allocation Linear programming Genetic algorithm 
(1992) 

Bos(1993) Forestry zoning Linear programming Simulated 
annealing 

Lockwood and Harvest scheduling in Linear and mixed integer Simulated 
Moore (1993) forestry programming annealing 

Botes et al. Crop irrigation problem Dynamic programming Simplex 
(1996) 

Hayes et al. Mate selection in Linear programming Genetic algorithm 

(1997) breeding program 

Parsons (1998) Silage harvesting Dynamic programming Genetic algorithm 

scheduling 
Kuo et al. (2000) Crop irrigation Linear programming Genetic algorithm 

scheduling 
Lu and Eriksson Harvest scheduling of Linear and mixed integer Genetic algorithm 

(2000) forestry stands programming 
Mardle and Fisheries management Linear programming Genetic algorithm 

Pascoe (2000) 
Moore et al. Silviculture harvest Dynamic programming Genetic algorithm 

(2000) scheduling 

GENERAL METHODS 

The alternative to mathematical programming is to first develop 'general' 
simulation models, which have no set restrictions or requirements. These 
models can then be optimised, using any of the range of available algorithms. 
The models are still a mathematical and logical representation of the system 
under study, and vary widely in scope, scale and complexity (Thornton and 
McGregor 1988). This open-minded nature enhances their general usefulness 
and applicability, as models can continue to be refined and improved until 
satisfactory. For example, if a pasture agronomist investigating a beef 
production model decided that the simple empirical formula describing legume 
dynamics was inadequate, it could be replaced by a detailed inter-plant 
competition model. The refinement of this module may take some extra tuning 
and computation time, but the rest of the model and all output, graphical and 
optimisation routines would remain unchanged. The entire model would not 
have to be reformulated, as would be required under a mathematical 
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programming approach (if it could actually be used in this situation). Allen and 
McGlade (1986) show how an initially simple fisheries model can be expanded 
to allow more realistic and important real-world effects to be modelled, first 
incorporating the interactive responses of the system's exploiters (the fishing 
fleet), and then spatial dynamics (Allen and McGlade 1987). 

Having invested considerable time and resources in the planning, 
formulation, verification and validation of a 'general' model which is deemed 
to adequately simulate the target system, the modelling team is faced with the 
next problem of optimisation. Large, multi-dimensional problems require 
targeted and efficient optimisation routines. Searching the feasible space of 
available management options and coming up with the global (as opposed to a 
local) optimum is a difficult task, especially so as the dimensions and 
complexities of the problem increase (Meadows and Robinson 1985). 
Evolutionary algorithms appear well-suited for this task, as they are amongst 
the most efficient of the available optimisation methods. Also, by carrying a 
population of solutions, they allow the identification and investigation of near
optimal strategies (Parsons 1998), which may also be of interest to the system's 
manager. 
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Chapter 2 

AGRICULTURAL SYSTEMS MODELS 

The types of simulation models used with agricultural systems vary 
widely in terms of scale, scope and purpose. They range from the micro
level (animal genetics and physiology), through paddock and farm-level 
models, to large regional or national systems. These various applications are 
illustrated, using published examples from this field. Next, the proven 
advantages and uses of systems research in agriculture are outlined. The 
choice of which variable to optimise depends on the purpose of the study, 
and include different measures of deviance (for model tuning applications), 
the gross production or margin (profitability) of the modelled system, or 
some utility function further incorporating risk or other important factors. 
This leads on to the consideration of multi-objective optimisations, where 
the multiple competing outcomes are frequently negatively correlated. By 
considering the types of results that end-users expect, the optimisation 
requirements of this approach are considered. Finally, the particular types of 
problems which agricultural systems models pose are listed and discussed. 
Practical methods of dealing with these problems are outlined, again using 
agricultural examples from the literature. 

1. FEATURES AND METHODOLOGIES 

Many general models of real-world systems concentrate on discrete, 
controllable problems, such as transport systems, service queues, aircraft 
design, factory layout and scheduling, and engineering designs. On the other 
hand, models of agricultural enterprises range widely in scope and purpose 
(Mayer 1985). These go from sub-farm and whole-farm simulations through 
to national or international industry systems, as exemplified in many issues 
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of the journal' Agricultural Systems'. Fortunately for systems researchers 
working in this field, the modelling approach is applicable across the whole 
range of scales (Thornton and McGregor 1988). 

At the lower end of the spectrum, models have been used at the micro
level, for example genetic improvement studies (Hayes et al. 1997, Meszaros 
et al. 1999) and within-animal physiology and nutrition (Freer et al. 1997). 
Models can be used to investigate pasture dynamics or cropping systems 
(Hammer and White 1992), on a within-paddock basis. The next level up is 
the one most frequently studied and published in the literature (as will be 
listed in the following chapters), namely models of a single farm or 
agricultural enterprise. Typically, these farms are owned and managed by a 
single person or family, and form a discrete economic enterprise which can 
be studied and optimised. These systems occur world-wide, and range 
across small-plot mixed farming, intensive livestock (for example, piggeries, 
poultry, dairying, cattle feedlots, and egg production), plantations, grain and 
field crops, and large-scale grazing or mixed enterprises. Single properties 
can also be integrated into multi-farm systems. For example, in Australia 
there are several large pastoral companies which own a number of beef 
producing properties, often in different geographical and environmental 
regions to take advantage of climatic and vegetation variability. The 
management, nutrition and flow of animals from birth through to marketing 
forms an integrated operation. Silviculture applications typically focus on 
whole-forest or area management, investigating the optimal harvesting 
schedules over time-frames which usually cover a number of decades (Roise 
1990, Lockwood and Moore 1993, Lu and Eriksson 2000, Moore et al. 
2000). 

Regional or whole-system studies are also common in agriculture, and 
include models of the grain distribution system of the USA (Koo and 
Thompson 1982), the dairy industry of north-eastern USA (Pratt et al. 1986), 
animal production in the savannas of Colombia (Thornton 1988), the wheat 
grazing systems of the USA southern plains (Rodriguez et al. 1990), the 
northern Australian grazing industry (White et al. 1998), and fisheries in 
Western Australia (Watson and Sumner 1999) and the English Channel 
(Mardle and Pascoe 2000). Agricultural models covering whole nations (or 
even the global level) remain possible, but would tend to be difficult to 
implement properly because of the diverse and heterogeneous nature of any 
targeted system on this scale. 

Systems models offer advantages in the study of many scientific and 
commercial areas, including agriculture (Rickert and Winter 1980). Given the 
complexity of these systems, a modelling approach is the only practical method 
to evaluate the multitude of dynamic interactions (Hammer and White 1992). 
In this context, models can be used both strategically (where the best long-term 
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overall strategy for the system is to be determined), and tactically (shorter-term, 
where the best tactics for the current situation can be evaluated). This tactical 
focus has proven valuable in the extension role, for example training producers 
to think about their farms and evaluate the likely responses given different 
'what-if scenarios (Gillard and Monypenny 1988, Rossing et at. 1997). For a 
number of agricultural systems, the results of model investigations have been 
adopted by primary producers (Hammer and White 1992). This is particularly 
so when the model results confirm the current industry best practice, as in the 
New Zealand sheep industry (Barioni et at. 1999a). Conversely, Parker et at. 
(1999) point out that the uptake of decision support models and results by New 
Zealand farmers has been slower than expected. As an extension to the 
evaluation of the immediate (tactical) effect of interacting management options 
on the farming enterprise, longer-term strategies and dynamic interactions over 
any reasonable time-horizon can also be investigated (Foran et at. 1990, Mayer 
et at. 1998a, Howden et at. 1999). 

The use of models for extrapolative purposes can include the investigation 
of strategies which are have yet to be used in practice, such as determining 
policies to minimise agricultural greenhouse emissions (Kulshreshtha et at. 
2000) and environmental impact (Pluimers et at. 2000), or situations which are 
yet to occur, including climatic and environmental change (White et at. 1996, 
Hall et al. 1998, Howden et al. 1999). Models can also be used to recreate and 
estimate historical events which were not explicitly recorded, such as major 
land degradation events (McKeon et al. 1990, Stafford-Smith and McKeon 
1998). In some of these cases, modelling studies can have a major impact on 
society, in that they have been used to determine national agricultural policy 
(White et at. 1998). 

One remaining concern is the applicability of these models to their 
respective real world populations, and the potential problem of extrapolation. 
Models are typically developed using data at hand, which is assumed as being 
applicable to the targeted population. This is not always the case - Figure 1 
shows a comparison between modelled mortality rates (which were based on 
data from research stations) versus rates observed in on-farm trials across the 
state of Queensland, from our studies (Mayer et al. 1999c). The estimated 
mortality rates here are taken as the independent axis, to conform with 
statistical assumptions (Mayer and Butler 1993, Mayer et al. 1994a). This 
figure indicates a high degree of bias. Similarly, genotype by environment 
interactions are common in agricultural systems (Richardson and Hahn 1994), 
hence common parameters cannot be used across all systems. Production 
models need to be adapted and tuned to each different vegetation community or 
environment before being used, as done in Rickert and Winter (1980) and Clark 
et al. (2000). 
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Figure 1. Illustration of bias - the model was based on research stations data, whereas the 
actual mortalities were observed on farmers' properties. 

2. OPTIMISATION REQUIREMENTS 

There are a number of different end-users of agricultural models, with each 
having specific requirements. Researchers typically wish to investigate the 
system thoroughly, to make sure it is a realistic representation of the real world, 
and arrive at valid conclusions concerning its best management. Farmers or 
enterprise managers will sometimes want just the optimal configuration, but 
more commonly also need the comparison between alternate strategies which 
produce similar ultimate economic performance. Policy-makers (including 
politicians) may just wish to know which strategy to recommend as 'the best'. 
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One major consideration is the selection of just which of the modelled 
variables to concentrate on and optimise, and this depends on the scale and 
type of system being studied. For regional or larger systems, overall 
economic performance is typically used. However, this 'strictly mercenary' 
approach can ignore changes in infrastructure which may be detrimental to 
society, such as closing down facilities which currently provide local 
employment, or forcing boats out of a fishery without considering just where 
they are supposed to go (Mardle and Pascoe 2000). 

At the farm or enterprise level, total farm production, or the gross value 
of production, have been used - for example, the milkfat production of a 
dairy farm (Hart et al. 1998). However, it is often the case that maximal 
production may only be achieved with excessively expensive inputs. Hence, 
some economic measure such as gross margin (the value of produce sold, 
less the costs of the variable input options) is usually considered. A number 
of variations are possible here - fixed costs mayor may not be included, the 
effects of taxation can be factored in if required, and interest rates are 
usually included in dynamic problems. All this, however, still ignores any 
non-costable benefits of alternate options. Some of these can be included, 
for example paying the farmer a nominal hourly wage will pick up any 
increases in leisure time from improved management. However, other non
cash benefits can be difficult to include, for example the decreased use of 
pesticides can be advantageous environmentally, altruistically (as this delays 
the potential development of resistant strains of pests), and from a marketing 
perspective (it both lowers the chances of produce being condemned because 
of contamination, and gains a market advantage under the 'clean, green' 
image). Risk is also an important consideration with these systems 
(Feinerman et al. 1989), as maximal profitability is often achieved by driving 
the system harder, with increased chance of a biological crash. Utility 
functions which can incorporate varying levels of risk-averse behaviour can 
be used (Schilizzi and Kingwell 1999), thus allowing producers to adopt 
either a regret-minimisation or a risk-minimisation strategy (Paudel et al. 
2000). 

Despite these developments, some multiple-objective problems remain 
where a utility function approach cannot be used. Examples include 
cropping systems where both soil loss and profitability are important (and 
possibly differentially so between producers), and controlled breeding 
programs where genetic gain is to be maximised but level of inbreeding 
minimised (Meszaros et al. 1999). Frequently, these 'conflicting' objectives 
are strongly negatively correlated. If they cannot be appropriately weighted to 
form a combined single utility value, decision makers then require a curve or 
frontier, which portrays the trade-off between these key outcomes. Here, each 
identified solution is required to be Pareto-optimal or nondominated (Fonesca 
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and Fleming 1997). The traditional approach to obtaining this curve is to set 
one of these (such as maximum allowable soil loss) at a range of fixed levels, 
and then for each of these optimise for the other outcome (for example, profit) 
(Ritzel and Eheart 1994). More complicated methods, such as using Pareto 
rankings (where all nondominated solutions share the top rank), or scoring 
inversely according to the number of dominating solutions (Fonesca and 
Fleming 1997), are also available. Here, evolutionary algorithms can be used 
to good effect, as they naturally maintain a population of solutions. Over the 
time-frame of the optimisation, these should migrate onto the (optimal) Pareto 
frontier. 

The second major use of optimisation in systems research is in the tuning of 
endogenous or internal model parameters. Here, the theoretical framework of 
the model has previously been defined, and the researcher needs to estimate 
parameter values to tune the model so that it best matches available data. These 
problems can arise when developing models, or applying existing ones to new 
environments, varieties, soil types, etc. The process is similar to non-linear 
statistical fitting, which cannot be used here because a model is not a single 
function. For model tuning, the choice of which variable to optimise is more 
straight-forward, and is usually taken as a summed measure of the difference 
between the observed and the modelled values. These include the sum of the 
absolute deviances (Goggos and King 2000), the residual sum of squares 
(Hendrickson et al. 1988, Hammer et al. 1993, Olsen et al. 1993, Franchini 
1996, Franchini et al. 1998) or its log (Campbell et al. 1998), the residual 
variance (Wang 1991) or mean square (Cho and Lee 2000), and the scaled 
metric distance (pabico et al. 1999). The independent variables are the model's 
internal parameters, which when optimised represent the tuned model. As with 
correlated parameters in nonlinear regression, various combinations of model 
values can contribute a similar degree of fit to the output results, implying 
potential multiple optima for the optimisation. 

Having decided just which variable to optimise, most users require a robust 
'black-box' optimisation algorithm which can be tagged onto and integrated 
with the systems model, and which will reliably return the globally optimal 
solution for any given scenario. Computationally, this relationship is often the 
other way around - the optimisation routine (of which there are many, as will 
be illustrated later) drives the whole process, and the model is coded in with 
this (often as a subroutine). The exact mechanics here depend on the 
computing platform and the code used in the model and the optimisation 
algorithm, as will be discussed in Chapter 3. More recently, some optimisers 
have also become available within major software packages, such as MATLAB 
and Microsoft Excel. 
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3. PROBLEMS 

Simulation models in general, and agricultural systems in particular, 
constitute a class of applications which cause problems for many of the 
available optimisation techniques. Across the range of studied systems, these 
problems include the following. 
1. No derivative functions are available. A number of optimisation 

algorithms (specifically, those methods which iterate using gradients) 
require first and second derivatives. Except in the simplest case of a 
single-function model (which presumably could be directly optimised), 
simulation models cannot be analytically differentiated. If derivatives are 
required for the optimisation, they must be approximated numerically, 
which introduces another possible source of error. 

2. Practical constraints on the input options. Whilst optimisation algorithms 
are generally free to trial unlimited values of the independent variables, 
in practice these variables (which generally represent the management 
inputs into the system) have practical constraints. For example, it is 
impossible to apply negative amounts of irrigation or fertiliser to a 
paddock, and these and other inputs would also have realistic upper 
limits. Some optimisation methods (in particular, evolutionary 
algorithms) cater for this restriction in the 'minimum to maximum' 
coding of the problem, however others can requiring the extra 
complications of transformations of these variables, penalty function 
methods, or the use of constrained optimisation methods. 

3. Shape of the response surface. Model output surfaces (mostly in higher 
dimensions, so not conducive to visualisation) are rarely smooth and 
convex (Fogel 1995a), as these complex systems are prone to instability 
(Woodward 1998). Economic results can range from 'bumpy' to 'almost 
chaotic' (Gleick 1987), depending on the problem. The response surface 
can have cliffs and discontinuities when the system is pushed too far -
for example, if a grazing system is overstocked, it will collapse (both 
biologically and economically). 

4. Multiple local optima. In agricultural systems these are quite common, 
resulting from alternate management strategies (often quite different in 
nature) producing similar economic consequences. For example, 
particular management strategies using low, intermediate, or high levels 
(and thus costs) of inputs such as fertiliser, irrigation and supplements 
may all be locally optimal, but these may (or may not) be similar in 
overall economic terms. 

5. Size and complexity of the problem space. By definition, a useful 
simulation model includes all of the key variables and pathways of the 
targeted system. In non-trivial agricultural studies, the range of possible 
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management decisions is generally large. For example, dairy farmers 
have a multitude of available options, including pasture management 
strategies (areas and species of pastures and fodder crops, along with 
irrigation and fertilizer usage on these, and grazing patterns over time and 
space), supplementary feeds (types, levels and timing), herd size and 
balance (targeted numbers of breeders, heifers and bulls, and age 
structure), the use of artificial insemination, which breeds to use, calving 
patterns, culling policies, pest management (on pastures as well as 
animals), marketing strategies, infrastructure development (for example, 
shade areas to alleviate heat stress), and any diversification schemes (for 
example, farm tourism or aquaculture of crustaceans in the effluent 
ponds). Each property manager must evaluate the particular farm's 
resources, and then select a balance of these options to 'best' manage the 
farm enterprise. From a modelling perspective, many of these options 
have various biological or managerial constraints which must be taken 
into account. Constructing a valid simulation model capable of 
accounting for their individual and combined effects is a difficult task, as 
is finding the optimal strategy for these systems (Meadows and Robinson 
1985). 

6. Epistasis (interacting effects). In practice, many of the input options tend 
to interact strongly, whereas some of the optimisation methods rely on 
these being independent. This property can cause major problems for a 
number of optimisation methods (Mayer et al. 1998a). In agriculture, 
documented examples of this effect include the interaction between 
stocking rate and calving time in a beef herd in Victoria (Spath et al. 
1984), the genotype by environment effect in the African grazing 
industry (Richardson and Hahn 1994), and the interaction between fire 
and grazing management in northern Australia (Liedloff et al. 1999). 

7. Time paths and their dynamic nature. Natural systems do not generally 
exist in equilibria; rather they tend to be dynamic and/or transient 
(Onstad 1988). For any given generic system, a simulation model may 
have been used to identify the optimal static or steady-state configuration 
for the farm, however each farm will be starting with a different 
infrastructure and herd composition. Whilst the targeted situation is thus 
known, the direction and rate of progress towards this optimal state will 
vary with individual farm circumstances. The optimal solution over time 
for each farming system has to also include projected or potential 
changes in market returns, interest rates, taxation and level of debt. Also 
critical for many agricultural enterprises is the projected assumptions 
regarding weather patterns, including potential climate change scenarios 
and natural disasters such as cyclones, floods and (in particular) droughts 
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(McKeon et al. 1990). Nominated or historical climatic patterns can be 
used here. 

8. Spatial heterogeneity. As the scale of the model grows, further 
complications also arise. In the central and northern regions of Australia, 
the average property size is 370 000 ha (O'Rourke et al. 1992). In these 
situations, spatial variability of soils and vegetation within properties 
becomes important, and needs to be taken into account (Hill et al. 1996, 
Mallawaarachchi et al. 1996). When scaling variables up to larger areas, 
aggregation errors can accumulate (Hansen and Jones 2000). For 
regional, state or national models, spatial random variability in a number 
of additional factors (such as weather, pest and disease incidence, and a 
range of animal performance parameters) causes further problems for 
modellers (Shaw and Findlay 1990). Also, at this scale the various sub
regions of the model tend to interact, for example a natural disaster in one 
region can cause a future drain in animal numbers from others, as well as 
immediately influencing the marketing structure and other components of 
the overall system. 

9. Biological and system variability. Across all model scales, one of the 
major problems is caused by variability. This occurs in animal intake 
and performance (Fisher and Baumont 1994), meteorological events and 
rainfall distribution (Feinerman et al. 1989), commodity prices (Griffith 
and Piggott 1994, Cacho and Simmons 1999), and even farmer behaviour 
(Lazarus and Dixon 1984), including the degree of control of pests, and 
adoption of new technologies. For any system, the key processes are 
rarely known with any certainty, and confidence limits on these estimated 
relationships tend to be comparatively wide. Deterministic models 
attempt to simplify this problem by using the mean rates of each of these 
variables, and assuming any effect of variation will average itself out. 
However, their overall interacting effects can only realistically be 
simulated by modelling each with an appropriate distribution. In 
common with other disciplines, stochastic processes and models can be 
used to cater for variability. Here, multiple runs of the stochastic 
simulations contribute probability distributions of outcomes to be 
evaluated and compared, using stochastic dominance theory (Anderson et 
al. 1977), or by considering the average utility of multiple Monte Carlo 
runs (Day and Sparling 1977). With some exceptions (Mayer et al. 
1 994b, Buxton and Stafford-Smith 1996, Cacho and Simmons 1999), 
these methods are yet to be widely used in agricultural modelling. 
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Chapter 3 

APPLICATION OF EVOLUTIONARY 
ALGORITHMS TO MODELS 

Different forms of evolutionary algorithms have been developed for 
optimisation, in a number of scientific disciplines. The historical 
developments of the major underlying types are outlined, along with their 
current consolidation into a more standard and generic methodology. 
Published applications of the whole range of evolutionary algorithm types to 
the study of agricultural systems are listed (Appendix 1). These studies are 
categorised by application type, and the different forms of evolutionary 
algorithms used here are discussed. Finally, the different methods of 
interfacing the systems models with the chosen evolutionary algorithms are 
outlined and illustrated, with consideration given to problems and practical 
solutions. 

1. FORMS OF EVOLUTIONARY ALGORITHMS 

In a research equivalent of parallel evolution, different forms of 
evolutionary algorithms have been developed to practical fruition over the 
past few decades. The two most commonly used with agricultural and 
general models are genetic algorithms, primarily researched in the USA and 
English-speaking countries, and evolution strategies, which were largely 
developed in Germany (Hinterding et al. 1995). Other principal forms are 
evolutionary programming (Fogel 1995b) and genetic programming (Koza 
1994), along with a range of evolutionary methods which are more specific 
to particular problem areas (Saloman 1996, Back et al. 1997a). The separate 
evolutionary disciplines first began communicating in the early 1990s (Back 
et al. 1997c), and since have swapped successful traits and strategies. 
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The generic term of evolutionary algorithms is now commonly used to 
cover this whole range of these methods. For the two types that cover most 
historical applications in the agricultural systems area, namely genetic 
algorithms and evolution strategies, summarised histories and general 
methodologies are as follows. 

GENETIC ALGORITHMS 

Based on the natural selection theories of John Holland, genetic 
algorithms have gained note with popular press articles such as Radcliffe and 
Wilson (1990) and Wayner (1991). Around the same time some more 
thorough texts appeared (Goldberg 1989, Davis 1991b), along with biennial 
international conferences on genetic algorithms being held. In practice, 
genetic algorithms have proven to be very targeted and efficient. In New 
Scientist, Radcliffe and Wilson (1990) reported 'good' solutions after only 
105 trials in a system where complete evaluation was of the order of 1018°. 

As their name implies, genetic algorithms are based on the biological 
concept of genetic reproduction, with successive gains being made by 
parallelling the process of natural evolution. This optimisation process takes 
the independent variables of the targeted problem and converts them into a 
genetic representation (usually binary). Here, grey coding is recommended 
as being more efficient than direct binary coding (Schaffer et al. 1989, 
Hinterding et al. 1995), as this guards against Hamming cliffs. A population 
of such individuals is obtained through random or targeted processes, with 
these forming the 'parents' of the next generation. Frequency of parenthood 
is directly related to fitness, which is taken as the value of the resultant 
dependant variable being optimised. So, like evolution, the successful 
individuals pass on their genes (attributes) more frequently. 

The basic operation of genetic algorithms mimics sexual reproduction 
between two selected individuals, where sequences of genetic code are 
crossed and mixed to produce 'children' (the next generation), which are 
likely to be different from (and hopefully superior to) the parents. Over 
generations, this process tends to combine the more successful traits, and 
generally improve the fitness of the population. Low-level random mutation 
is also introduced to parallel nature, and this rediscovers 'lost' genes which 
may prove beneficial, as well as assisting in searching across the hyperspace. 
Over time, population structures tend to congregate around one (or a number 
of) optimal solutions. As with all current optimisation methods, there is no 
guarantee of finding the global optimum. Intuitively, the searching, mixing 
nature of recombination combined with the random element of mutation 
offers a relatively thorough coverage, even with extremely variable systems 
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(Klimasauskas 1992). The use of a number of random restarts remains good 
insurance though, and this has been shown to be beneficial in practice 
(Wayner 1991). 

Under the initial genetic algorithm scheme, the variables to be optimised 
(i.e., the discrete management options of the simulation model) are mapped 
directly to binary genetic codings. If the number of discrete levels is not 
equal to 2n (where n = 1, 2, .... ), then null levels can be used, or the 
'probable best' values of these options allocated more than once. The 
method of converting the continuous independent variables to discrete binary 
co dings introduces both advantages and disadvantages for this method. On 
the positive side, bound constraints are implicit, as values are mapped onto a 
'lowest to highest' defined range. If there is no realistic bound in either the 
upper or lower direction (i.e., possible values can range out to infinity), then 
a prior transformation such as the exponential may be used to stretch the 
range of values. 

This discreteness of the representation of management options by binary 
genes also introduces disadvantages. Unlike the continuous optimisation 
methods, genetic algorithms cannot converge exactly onto an optimum, only 
to the nearest defined combination of input parameters. This problem can be 
alleviated by allowing more levels in each of these variables, however, this 
increases the length of the genes and thus the computational time to 
convergence. A safe approach, from a practical point of view, is to allow as 
many discrete levels as are realistically required in the real-world system that 
is being modelled. 

One further disadvantage of current genetic algorithms is their lack of a 
defined termination method. Typically, genetic algorithms are run for a 
fixed number of generations or iterations, or until the population members 
have largely converged (within user-defined specifications) to a single 
solution. However, in multiple-optimal systems Goldberg (1987) shows that 
genetic algorithms are capable of the parallel investigation of a number of 
function peaks, including minor sub-populations around the lower optima. 
In these situations, the whole population will never converge to either a 
single area of the hyperspace, or to within any set difference between 
function values, so automatic termination methods would be difficult to 
implement. The safest option is to set the number of iterations at some high 
value where the algorithm has had sufficient time to search, cross-breed and 
mutate, so further improvement is unlikely to occur. This 'high value' tends 
to be problem-specific, and is largely determined by trial and error. In 
practice, it involves running some exploratory optimisations to excessive 
levels, to decide the appropriate number of runs. 

As with any optimisation technique, researchers have trialed a range of 
operational parameters, adaptations and improvements. In general, optimal 
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settings appear to be problem-dependant, but robust values have been shown 
to work well across a variety of problems (Davis 1991b). The more 
important parameters and options include the coding of the problem's 
variables into an appropriate genetic representation, the choice of the 
population size, the method of selecting parents, the strategy for replacing 
popUlation members, and the types and rates of mutation and recombination 
to be used. These will be discussed in Chapter 6. 

Other adaptations and improvements have been proposed and trialed, 
including the much-discussed inversion procedure. Suggested as essential in 
early genetic algorithms, this methodological overhead did not prove useful 
or advantageous in practical applications (Davis 199Ib), and has largely 
fallen by the way-side. However, it may yet become important as the 
number of genes increases (Davis 1991a). 

Other developments which have met with mixed results include 
diploid (doubled-stringed) genes, which then require 
dominance/recessive genetic rules. 
restrictions on potential matings to reduce levels of 'inbreeding'. 
'bit climbing' (Ackley 1987), which parallels the sequential one
dimensional hill-climbing methods. 

- use of introns, which are segments inserted between coded operational 
bits (Angeline and Fogel 1997). 
Some of these have demonstrated improved performance, but only in 

problem-specific areas. Goldberg (1989) suggests this is because the basic 
genetic algorithms work so well. Whilst Michalewicz (1996) suggests that a 
thorough evaluation of operational parameters to guarantee reasonable 
performance is required, Horton (1996) found that genetic algorithms 
perform well across quite a wide range of crossover and mutation 
probabilities. The use of genetic algorithms on real-world problems is 
becoming more widespread. In a wide range of practical applications, they 
are allowing the better solution oflarger and more complex problems. 

EVOLUTION STRATEGIES 

The basic methods now collectively termed evolution strategies were 
developed in Berlin during the 1960s (Michalewicz 1996). Evolution 
strategies use real-number representation of the input values, so there is one 
'gene' representing each modelled management option. Mutation is the key 
evolutionary operator, and was initially the only operation used with a 
popUlation of one. Each 'offspring' is created by the random Gaussian 
mutation of each gene, according to a vector of mutation variances which 
itself evolves over time (Back and Schwefel 1993). Hence, the number of 



www.manaraa.com

APPLICATION OF EVOLUTIONARY ALGORITHMS TO MODELS 23 

genes is effectively doubled - for each input option to be optimised, one gene 
carries its value, and another its current mutation variance (Michalewicz 
1996). 

In evolution strategies, the fitness of each 'offspring' is judged in the 
usual way, namely the modelled value of the objective function using that 
member's trial combination of input variables. Whilst the mutation 
variances don't feature directly in this calculation, it does allows the more 
successful combinations of mutation variances to be 'dragged along' into the 
next generation, as they will be the ones generating the model input values 
which produce the best values of the objective function. These variances are 
initially larger to facilitate searching, and over time narrow down to near 
zero (and effectively fine-tune the solution) as the genes converge to their 
optimal value (Michalewicz 1996). Some applications also carry a third 
vector of covariances or correlations between the respective mutation 
amounts, allowing directional searching which is then optimised over time. 

The single-parent and single-offspring evolution strategy was adapted 
(Back and Schwefel 1993) to include multiple parents (with the number of 
these usually represented by 11), and multiple offspring (A.). Selection of 
parents for reproduction is usually random, and selection pressure is 
introduced by the offspring being retained or discarded on a deterministic 
assessment of fitness (Back and SchwefeI1993). Two separate strategies are 
available - the (/-l,A.) evolution strategy, where the parents are replaced by the 
best offspring at each generation, and the (/-l+A.) evolution strategy, where 
the combined parents and offspring compete to be amongst the best /-l 
individuals used as parents in the next generation. The former strategy has 
proven useful for noisy functions and problems where the optimum is non
stationary (Michalewicz 1996). The (/-l+A.) evolution strategy is somewhat 
equivalent to the elitist strategy of genetic algorithms (Miihlenbein and 
Schlierkamp-Voosen 1994), in that the best strategies are preserVed. This 
appears more appropriate to the optimisation of deterministic agricultural 
models. 

Regarding the balance between 11 and A., Fogel (1995b) showed that the 
(1 +A.) evolution strategy has a logarithmic increase in the rate of 
convergence over the (1 + 1) evolution strategy, and Miihlenbein and 
Schlierkamp-Voosen (1994) demonstrated a speed-up as A. was increased. 
Back and Schwefel (1993) found an optimal ratio of 1l:A. of about 1:7 for 
their types of problems. 
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CONSOLIDATION OF EVOLUTIONARY ALGORITHMS 

As with other competing methodologies, some early studies investigated 
the relative practical performance of genetic algorithms versus evolution 
strategies. On test functions, Back and Schwefel (1993) showed evolution 
strategies identified better optima, and at faster rates, than binary genetic 
algorithms. However, Keane (1996) found the opposite when comparing a 
sophisticated binary genetic algorithm against evolution strategies on 
difficult test functions. In the practical optimisation of laminate designs, Le 
Riche et al. (1995) found these two methods performed similarly. 
Hinterding et al. (1995) reported mixed results - genetic algorithms proved 
superior on discontinuous and multiple-optima test functions, whilst 
evolution strategies were better with lower-dimensional and smooth-type 
functions. Currently, though, genetic algorithms and evolution strategies 
may be viewed more as collaborators than competitors. As mentioned, the 
past few years have seen these two methods effectively merge into an even 
more powerful class of methods, now generally termed evolutionary 
algorithms. 

This generic term also includes other forms of evolutionary computation. 
Whilst genetic programming (Koza 1994) was initially developed for self
evolving computer programs, Whigham (1999) used this framework to 
develop a plankton dynamics model in freshwater lakes. Results were 
superior to both a theoretical model and a neural network. Operational 
parameters included a large population size of 500, a crossover rate of 0.9 
and a mutation rate of 0.05, which identify their method as an evolutionary 
algorithm. 

Evolutionary programming (Fogel 1995b) was initially involved with the 
development of artificial intelligence (Back et al. 1997 c), and has since seen 
wider application. It does not include recombination (Spears 2000), and is 
largely driven by selection as a culling force, plus mutation (Back and 
Schwefel 1993, Fogel 1995b). In a comparison using test functions (Back 
and Schwefel 1993), applications of evolutionary programming, evolution 
strategies and genetic algorithms gave mixed performance - the best 
algorithm depended on the form of the function being optimised. 

The practical integration of these different forms of evolutionary 
algorithms has resulted in a number of changes and enhancements to their 
respective basic formats. Most importantly, the adoption of real-value rather 
than binary genes is now more common, to more closely match the 
continuous nature of the variables of most problems. However, binary 
representation can still be used, particularly if the model's options align with 
discrete levels. The adoption of real-value coding opens up a range of 
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possible recombination and mutation operators, as will be outlined in 
Chapter 6. 

Another important consideration is whether to code mutation variances as 
a second suite of genes, as per the evolution strategies approach. If adopted, 
this effectively doubles the problem size. The alternative here is to use static 
or dynamic mutation rates across all variables, in line with the genetic 
algorithms method. 

In evolutionary algorithms, the role and importance of the major 
operators remains open. Each offers a balance between exploitation (using 
existing material to best benefit) and exploration (to adequately search the 
feasible space). Traditionally, genetic algorithms were driven by 
recombination, with mutation only a background operation (typically having 
a probability of 0.01 or lower), whereas evolution strategies initially only 
used mutation. The optimal balance between recombination and mutation 
can vary, and is likely to be problem-specific (Michalewicz 1996). Using 
test functions, Hinterding et al. (I995) found the best combination was lower 
crossover rates (0.1 to 0.4) with moderate mutation (up to SIN, N being the 
number of genes). On a transportation problem, the optimal combinations 
were crossover rates of 0.05 to 0.25 with mutation probabilities around 0.2 to 
0.4 (Michalewicz 1996). Significantly, in this transportation study, 
crossover rates of zero (thus leaving mutation as the only operator, in the 
style of evolution strategies) proved inferior, as was also reported by Back 
and Schwefel (1993). A number of studies have shown mutation and 
recombination to be advantageous to each other (Fogel 1995b). 

An early practical example of a 'combination' evolutionary algorithm 
was the breeder genetic algorithm of MUhlenbein and Schlierkamp-Voosen 
(1993, 1994). More recent applications from the agricultural systems field 
include Polheim and HeiBner (1997), Arias et al. (1998), Campbell et al. 
(1998), Mayer et al. (1999b), Meszaros et al. (1999), and Mardle and Pascoe 
(2000). As Hammel (1997) points out, evolutionary algorithms (of whatever 
form) are ideally suited to the optimisation of simulation or systems models. 
They are inherently parallel, have proven to be robust across a wide range of 
parameter settings, and are amongst the most efficient of the available 
optimisation methods. 

2. AGRICULTURAL MODEL APPLICATIONS 

Compared with other research areas, the agricultural disciplines have 
proved to be relatively slow in the uptake of evolutionary algorithms. In the 
more recent years, however, the trickle of evolutionary algorithm 
applications to various areas within the agricultural sciences has turned more 
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into a flood. Appendix 1 lists those found in the literature to date, with more 
appearing regularly. Overall, applications of genetic algorithms (originally 
only binary, but more lately including real-value codings) dominate, and few 
evolution strategies have been published in this field. The width and depth 
of these applications illustrates the different ways that evolutionary 
algorithms can be used in agricultural systems, in terms of the types and 
sizes of the systems modelled, the different forms of the objective functions, 
and the operational parameters of the various evolutionary algorithms (as 
will be discussed in Chapter 6). These applications of Appendix 1 can be 
categorised into a number of common themes. 

GREENHOUSE PRODUCTION 

The problem of maintaining optimal greenhouse conditions for the 
production of horticulture or floriculture is the topic for a number of studies. 
The first to appear was Annevelink (1992), where a spatial and temporal 
allocation of crop cycles was solved with a binary genetic algorithm, after 
initial linear and dynamic programming approaches proved inadequate. 
Morimoto and Hashimoto (1996) also used a binary genetic algorithm to 
determine optimal greenhouse tomato production, having modelled the crop 
growth and nutrient concentrations at critical physiological times. 

The remaining four greenhouse studies all modelled the heating costs and 
temperature controls of these systems. Polheim and HeiBner (1997) included 
ventilation and CO2 enrichment as options in a complex 51-variable 
problem, which was solved via a combination of a real-value genetic 
algorithm to conduct the global aspects of the search, and an evolution 
strategy to fine-tune the solution near the optimum. Arias et al. (1998) also 
used a real-value genetic algorithm, noting that this representation aligned 
better with the greenhouse control parameters. In this system, the genetic 
algorithm set the targeted values for the real-world neural network and fuzzy 
controllers to then achieve. Goggos and King (2000) used a hybrid (of a 
binary genetic algorithm plus a hill-climber) to minimise deviations from the 
targeted temperature schedule, and Husmann and Tantau (2001) utilised a 
binary genetic algorithm with a greenhouse model which incorporated heat 
storage, boiler configuration and fuel type. This study reported near-optimal 
results after only 10 generations, or a total of 300 runs of the simulation 
model, indicating the relative efficiency of this evolutionary algorithm. 
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FARM MANAGEMENT 

One of the most logical, and most used, applications of evolutionary 
algorithms to agricultural systems is in the optimisation of whole-farm or 
property systems. These are typically complex and multi-dimensional 
models, which cannot easily be optimised. A model of a dairy farm in the 
sub-tropics of Australia was optimised using the GENESIS binary genetic 
algorithm (Mayer et al. 1995, 1996a), and incorporated management 
decisions covering pasture types and areas, applications of fertiliser and 
irrigation, grazing management, calving patterns and the use of 
supplementary feeds. A similar study, modelling a pastoral dairy farm of 
New Zealand (Hart et al. 1998), found the optimal management regime after 
only 15 000 model runs. Parmar et al. (1996) optimised the number and type 
of machinery selected for peanut farm management in Georgia (USA), and 
Parsons (1998) optimised the spatial and temporal harvesting plans for silage 
on a farm system in the UK. Both these studies used binary genetic 
algorithms. Barioni et al. (1999a) modelled the key management decisions 
(paddock grazing rotation, fertiliser applications, lamb drafting policy, and 
supplementation) over time, for a New Zealand sheep farm. The optimal 
management policy found proved to be consistent with the recommended 
industry best practice for this system. 

Different combinations of farm investment strategies were stochastically 
modelled and optimised by Cacho and Simmons (1999), resulting in 
cumulative distributions to be interpreted.· They used a binary genetic 
algorithm, but suggested that real-value coding may perform better. In the 
latest farm-level study to date, a beef property in northern Australia was 
modelled - firstly considering 40 annual trading (i.e., buying and selling) 
decisions (Mayer et al. 1999a), and then expanding the model to include 
within-year details and stocking pressure, resulting in 70 dimensions to be 
optimised (Mayer et al. 1999b, 2001). This series of studies contrasted the 
performance of both binary and real-value genetic algorithms with evolution 
strategies. The genetic algorithm versions were found to perform similarly, 
but were superior (in terms of the rates of convergence) to the optimisations 
using evolution strategies. These results were attributed to the latter's 
requirement of an extra gene (to carry each option's mutation variance), for 
each of the 70 management options. 

REGIONAL MODELS 

The next level of complexity up from the individual property is a multi
farm or regional model. Traditionally, many of these types of systems have 
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been modelled using linear or mathematical programming, as until recently 
these were the only practical method of optimisation. Kuo et al. (2000) 
modelled irrigation usage and crop types and areas in a number of farming 
basins in Utah (USA), and found a binary genetic algorithm to be superior to 
hill climbing and simulated annealing. Mardle and Pascoe (2000) developed 
a complex model of the English Channel fisheries system, with 876 variables 
covering the fleet size, configuration and targeted species by seasons. 
Despite a run-time of several hours, the real-value and integer genetic 
algorithm effectively solved this problem, for which a linear programming 
approach was found to be infeasible. Despite these few successes at the 
regional level, the application of evolutionary algorithms to national or 
larger systems is yet to be noted. 

BREEDING PROGRAMS 

An interesting application of the 'artificial genetics' of evolutionary 
algorithms is to the modelled genetic gains in breeding programs, in both the 
animal and plant sciences. Genetic algorithms have been used to effect here 
because they can model the dynamic and temporal nature of these problems, 
unlike some of the static methods (Hayes et al. 1997). At the farm-level, a 
binary genetic algorithm was used successfully to analyse mate selection for 
the pairing of individual animals (Hayes et al. 1997). For the national sheep 
breeding industry of Australia, Horton (1996) investigated the optimal 
arrangement of the number of tiers, flock sizes and age structures, exchange 
rates, and selection mechanisms. The binary genetic algorithm used here 
identified optimal solutions which hill-climbing methods had repeatedly 
failed to find. Similarly, Meszaros et al. (1999) also investigated large
population animal breeding strategies (maximising genetic gain, penalised 
for levels of inbreeding), using a real-value genetic algorithm. In the plant 
sciences, Verryn and Roux (1998) found a genetic algorithm to be superior 
to the statistical method of best linear unbiased predictors, for selection in a 
South African forestry breeding program. 

COMBINATORIAL OPTIMISATION 

Despite then suggested superiority of alternate optimisation methods 
(such as the tabu search strategy) on these types of problems, evolutionary 
algorithms have been used to effect here. The costs of a water distribution 
network in Mexico were minimised using a binary genetic algorithm 
(Mariano 1998). On this complex case study, which would take three 
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million years of computation to solve by complete enumeration, the genetic 
algorithm outperformed two heuristic methods, by 4 and 19% respectively. 
The dispatch processes of a nursery were modelled in Kozan (1999). On this 
travelling-salesman type problem with 21 nodes, a discrete-value genetic 
algorithm outperformed a number of problem-specific heuristics. The 
routing of an autonomous orchard sprayer was optimised in Cho and Lee 
(2000), using an integer genetic algorithm which was integrated with a 
global positioning system and real-time operational software to control the 
sprayer unit. In this study, the simulations indicated a 68% improvement on 
the baseline, but in the real world this was very much reduced, due to tyre 
slip and the response time of the hydraulics. However, these faults cannot be 
attributed to shortcomings of the evolutionary algorithm, but rather to 
inadequate engineering. 

The spatial and temporal harvesting schedules of forest stands also form 
a version of combinatorial optimisation. Moore et al. (2000) found optimal 
harvesting decisions after only 200 generations, using a trinary genetic 
algorithm (i.e., each coded option took one of three possible values). In a 
similar silviculture application, Lu and Eriksson (2000) used a two-stage 
binary genetic algorithm - firstly an exploratory search using a coarse-grid of 
625 spatial cells, followed by a fine-tuning version with 10 000 cells of trees. 

STATISTICAL APPLICATIONS 

A novel application of a genetic algorithm to experimental design is 
outlined in Davies et al. (2000). Here, it is not a systems model which is 
being optimised; rather, a series of agricultural experiments, investigating 
the combinations of eight additives to aid silage production. With two 
weeks being required to physically run and analyse each trial, only five 
generations were possible, each having a population of 50 (trialed 
combinations of additives). Of the three elite solutions at the end of these 
experiments, two were shown to outperform the industry standard 
formulations. 

The fitting of model parameters to observed data form the majority of 
applications of evolutionary algorithms to statistical-type problems, using 
binary (Wang 1991, Pabico et al. 1999) or real-value (Franchini 1996, 
Franchini et al. 1998) genetic algorithms, or a combination of both types 
(Campbell et al. 1998). For these studies, a range of statistical measures are 
minimised (Appendix 1), all of which measure the degree of discrepancy 
between the observed and predicted values. In general, these were 
successful - Wang (1991) reported near-optimal results after only 4 000 runs, 
for a 7-parameter model with a search-space of the order of 1021 • A far more 
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difficult problem set of 42 parameters was fitted for a model of the 
degradation of pesticide residues in wool (Campbell et al. 1998). Given the 
nature of this model, it is likely that these parameters were largely 
independent of each other (i.e., there was little epistasis), which makes the 
problem somewhat easier to optimise. 

Pabico et al. (1999) found genetic algorithms to be superior to hill
climbing methods in determining cultivar coefficients for crop models (13 
parameters and a search-space around 1032). Conversely, on a hydrological 
model, Franchini (1996) required a local search heuristic to be hybridised 
with a real-value genetic algorithm before convergence was achieved, and 
Franchini et al. (1998) showed there was no 'globally superior' algorithm for 
the models listed. In a number of these case studies, the genetic algorithm 
was outperformed by heuristic methods. The size of these examples (11-13 
parameters with search-spaces around 1023_1033) should not contribute to this 
lack of convergence problem - as outlined above, larger models have been 
successfully fitted. The nature of this model (Franchini 1996, Franchini et 
al. 1998) indicates that it is more likely to have interacting parameters, 
which may have caused these problems. The application of evolutionary 
algorithms to the statistical fitting of nonlinear regression problems, as was 
done with simulated annealing (Mayer et al. 1996b), appears a logical 
extension into this field. However, this has yet to be noted in the literature, 
and genetic or evolutionary algorithms are yet to be incorporated in the 
major statistical software packages or libraries. 

3. MODEL / OPTIMISATION INTERFACE 

Users wishing to optimise their systems model using an evolutionary 
algorithm need to integrate these two programs. Obviously, this is easiest if 
both are written in the same language, but of late compiled versions can 
effectively be combined. For the interface, it is common to have the 
evolutionary algorithm as the 'main' (driving) program, with the model 
being inserted as a subroutine or function. Each call to this subroutine is a 
trial run of the model, as the main program conducts its search for the 
optimal combination of model inputs. 

The only common methodological feature between the wide range of 
applications of evolutionary algorithms to agricultural systems is that there 
appears to be no common methodology. This may be due in part to the 
differing types of problems being modelled, but is more likely a result of the 
wide choice of algorithm types and sources. Given that no one of these is 
globally superior, most users find their adopted method works quite well, 
even ifit usually requires some minor tuning or parameter adjustment. 
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Many users code up their own version of their desired evolutionary 
algorithm. Hart et al. (1998) and Mariano (1998) based their programs on 
the 'simple genetic algorithm' (SGA) of Goldberg (1989). Fortran versions 
of evolutionary algorithms were coded in Parmar et al. (1996), Meszaros et 
al. (1999), and Lu and Eriksson (2000), while Horton (1996) used Pascal, 
and Verryn and Roux (1998) used Clipper. Regardless of the computer 
language used, this approach involves complex coding and extensive testing, 
to ensure that the programs are actually doing what they're supposed to. 
This approach is fine in that the user has direct control over the 
methodology, and if a learning experience is required. However, practical 
systems modellers usually require efficient, proven algorithms that they can 
simply hook up with their model. 

The range of 'off-the-shelf' evolutionary algorithms, both shareware and 
purchasable, is well exemplified by the comprehensive compilation listed on 
http://www.aic.nrl.navy.mil/galist/src. Whilst many ofthese are promoted as 
'plug-in-and-go' black box optimisers, some considerable effort is still 
required in coding the interface between the chosen algorithm and the user's 
model. Further time is often then spent in gaining an understanding of the 
package's various options, and getting the algorithm efficiently tuned and 
working with the problem at hand. Hence, few users will be familiar with 
more than one algorithm, as once they have become familiar with its 
particular foibles and advantages, they will then tend to reuse it for new 
problems. 

Our research (Mayer et al. 1995, 1996a, 1999a, 1999b) has extensively 
used GENESIS (Grefenstette 1995), a binary genetic algorithm, with few 
problems. For real-value codings of the same models (Mayer et al. 1999b, 
2001), we have also used Genial (Widell 1997). Whilst both these packages 
performed successfully, this is not necessarily an endorsement or 
recommendation for either. Most packages would probably work as well, as 
they are all based on the proven efficiencies of evolutionary algorithms. 
Polheim and HeiBner (1997) used the MATLAB toolbox, and Woodward 
(1998) adopted Evolver, both with success. 

The overall recommendation is thus to use one of the many available off
the-shelf evolutionary algorithms. These are generally easy to integrate and 
use, and most allow the different methodologies and parameter options that a 
user may wish to trial. 
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Chapter 4 

APPLICATIONS OF ALTERNATE 
OPTIMISATION TECHNIQUES 

This chapter covers a number of applied optimisation techniques which 
do not fall under the 'evolutionary algorithms' category. It gives a brief 
outline of some methods which proved to be only of limited use for systems 
models, and then overviews the generic types of applicable optimisation 
classes. This includes discussion on their respective methodologies, natural 
advantages, and problems and disadvantages, and how they have been 
applied to real-world systems in general, and agricultural systems models in 
particular. These respective classes of optimisation methods are gradient
type (hill-climbing) and its derivatives, direct search methods, simulated 
annealing, and the tabu search strategy. Hybrid methods, which incorporate 
more than one of these available families of techniques (as well as 
evolutionary algorithms), are also considered. 

1. INTRODUCTION 

When 'A new algorithm for optimisation' (Anonymous 1972) appeared 
in the journal 'Mathematical Programming', a great breakthrough had 
apparently been made. The paper outlined a relatively simple procedure 
which would simultaneously cater for nondifferentiable functions, integer 
variables and a nonconvex domain, whilst also having proven convergence 
at a very efficient rate. Unfortunately for researchers in this field, however, 
it proved on closer inspection to be a (mathematically well-disguised) 
send-up of procedures in this complex area - a fact that has been missed by a 
number of readers who have apparently taken it seriously (Polyak 1987). 
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Since the 1950s, studies in methods of optimising non-linear problems 
have increased markedly in many scientific disciplines (Gill et al. 1981). 
With the passing of each decade, advances in techniques and computing 
power have enabled the solution of problems of a size and complexity which 
previously could not be contemplated. For the generally applicable methods 
of optimisation, this area of applied mathematics remains a rapidly changing 
and evolving discipline. A number of suggested optimisation methods have 
proven to be too inefficient, impractical, or ill-suited to the general 
optimisation of systems models. These include -
1. Complete numerical (factorial) evaluation of the feasible space. Here, 

every level of each input option is tested in tum with each of the levels of 
all other factors, and the optimum taken as the best value obtained. If 
more precision is required, a finer grid can be used across the optimal 
region. Whilst a comprehensive evaluation method, it is unworkable 
with even moderately-sized problems, and the only agricultural literature 
examples are from models with a small or deliberately simplified search
space. Rodriguez et al. (1990) evaluated eleven stocking densities by 
nine time combinations in a grazing systems model of the southern USA, 
and Gates et al. (1994) considered discrete temperature settings for a 
controlled-environment piggery model. A seven-way factorial of a dairy 
genetic improvement model, with a total of 640 discrete combinations, 
was subjected to analysis of variance (Mayer et al. 1994b). McIvor and 
Monypenny (1995) conducted a two-way factorial design on their beef 
property model, and Buxton and Stafford-Smith (1996) compared five 
discrete rangeland management strategies. Paz et al. (1999) investigated 
a range of 21 rates of nitrogen, using the CERES-maize model. 

2. Random (non-directional) search patterns. As may be expected, these 
tend to be very inefficient, and are seldom used in practice. In the 
optimisation of test functions and models, a number of case studies 
(Corana et al. 1987, Bramlette and Cusic 1989, Bramlette and Bouchard 
1991, Davidor 1991, Syswerda 1991) have used random search methods, 
mostly only as benchmarks to demonstrate the superiority of the more 
targeted and efficient algorithms. However, recently this underlying 
principle (of randomness) has been brought back as a feature of some of 
the more robust global search methods. 

3. Sequential one-dimensional optimisations. Here, each management 
option (or dimension) in the model is optimised in tum, either 
automatically by the algorithm, or 'manually' via the user during 
exploratory model runs (Thornton and McGregor 1988, Feinerman et al. 
1989). These methods become unwieldy with even a moderate number 
of dimensions, and also suffer severely when dimensions have an 
interacting effect on the variable to be optimised (i.e., when the 
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dimensions are not independent). As has been shown, this is often the 
case with models of agricultural systems. 

4. Approximate the surface by a smooth function or meta-model. 
Polynomial functions are generally favoured, as these can be solved 
easily to find the optimum, via standard mathematical methods 
(Bertsekas 1975). This approach was used in simulation of the 
reproductive performance of a beef herd (Notter and Johnson 1987, 
Notter and Johnson 1988). Whilst intuitively appealing, problems arise 
from the key assumptions of smoothness and symmetry of the response 
surface, and independence of the dimensions, as well as the potential lack 
of fit between the systems model output and the meta-model (Kleijnen 
1987). Even if the response surface was smooth and unimodal, one of 
the gradient techniques would appear to be more useful, as these work 
directly with the model output values. 

5. Branch and bound algorithm. In practice, this method is not well suited 
to the optimisation of general systems models. Being an exact method, it 
is only useful with smaller problems (Osman 1993). On larger models it 
can be markedly inefficient, and numerically degenerate to almost 
complete evaluation (Pardalos et al. 1995). For example, on an allocation 
problem for groundwater remediation, a branch and bound algorithm 
took over 107 model evaluations to identify an optimal solution that a 
genetic algorithm found in only 1 250 model runs (Wagner 1995). 
Similarly, Kozan (1999) showed that the branch and bound method failed 
on a 21-node nursery allocation problem - even after extensive 
computation, its best solution was 10% worse than that of a genetic 
algorithm. On a moderately-sized forestry management problem with 84 
grids, Bos (1993) found the branch and bound method to be 
computationally intractable, and opted to use simulated annealing 
instead. 

6. Neural networks. This forms a large discipline, primarily aimed at 
developing network models to predict data patterns. As such, neural 
networks themselves use many of the optimisation methods outlined in 
this monograph, to maximise their degree of fit. A range of allocation
type optimisation problems have been tackled by neural networks, 
including graph partitioning and map colouring (Ritter et al. 1992), and 
the application of neural networks and genetic algorithms to the 
travelling salesman problem (Murtagh 1994). On a protein-folding 
problem (via lattice partitioning), Rabow and Scheraga (1993) found 
neural networks to be more successful at finding the global optimum than 
a standard simulated annealing. Conversely, Peterson and Soderberg 
(1989) showed that simulated annealing found better solutions than 
neural networks, in graph partitioning (0.5% higher), and travelling 
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salesman problems (8 to 10% better). In developing a mathematical 
predictive model for the chlorophyll concentration of freshwater lakes, 
Whigham (1999) found the optimised mean square error of a genetic 
program to be 37.1, which was superior to that of a neural network, at 
41.8. Overall, however, neural networks cannot be classified as a method 
which can be generally applied to the optimisation of systems models, 
and no examples of this have appeared in the agricultural systems 
literature. 

2. GRADIENT-TYPE METHODS 

The common property of this multitude of techniques is that they 
calculate or estimate the gradient and curvature of the response surface at 
each iteration, thus determining the direction and distance of the next jump. 
Successive iterations (hopefully) converge towards an optimum, as shown 
graphically in Hart et al. (1998). At each iteration many calculations are 
made in the vicinity of the estimated point, making these methods well 
suited to parallel computing (Bertsekas and Tsitsiklis 1989). For smooth, 
unimodal functions (or models which produce this type of response surface), 
these methods are amongst the most efficient available (Fletcher 1987). For 
a range of these problem types, efficient convergence can be proven (Dunn 
1981 ). 

FORMULATION 

The mathematical derivation of these methods has been well documented 
(Bunday 1984, Fletcher 1987, Fryer and Greenman 1987, Polyak 1987). The 
shape of the response surface is estimated via Jacobian and Hessian 
matrices, which contain the first and second derivations respectively, for 
each dimension of the hyperspace. If these values cannot be directly 
calculated mathematically, they can usually be estimated with sufficient 
accuracy by finite differencing or quadratic approximation (Madsen 1975). 
This situation occurs with output from simulation models, which cannot be 
differentiated analytically. 

The three necessary conditions for x * to be a global maximum of f(x) are 

'tIx, f(x*) - f(x) > 0, 
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f (x") = 0, and 

pI (x") ~ 0 

Most gradient algorithms use the second and third of these conditions to 
determine the stopping point, which is then taken as the optimum because no 
further progress can be made in the immediate vicinity. Here, the first 
condition also holds for at least the local environment, but this is not 
guaranteed globally. This causes the most serious deficiency with these 
methods - whilst they efficiently track up-hill to the top of the surface, there 
could well be a higher peak elsewhere on the response surface. Any peak in 
the multi-dimensional hyper-surface will satIsfy these conditions locally, and 
qualify as a local maximum. However, finding the absolute highest point, or 
global maximum, can prove difficult. If these methods fall into the basin of 
attraction (Grebogi et at. 1987) around a local maximum, they are trapped by 
it, and will then only find the g)obal maximum if a jump allows an iteration 
to escape from this basin. The only way to deal with this shortcoming is to 
trial many different starting conditions, well spread across the feasible 
hyperspace. Each solution (maximum) should be evaluated, and the highest 
then adopted as the global maximum. However, in multi-dimensional 
problems with multiple local optima, even this solution may only give a 
reasonable to poor chance of finding the global maximum (Polyak 1987, 
Mayer et at. 1991). 

Potential users are faced with a wide variety of available methods. In 
many cases, the best choice will depend on the type of problem being 
optimised. Some methods have been developed specifically for the efficient 
solution of particular problems, but these cannot necessarily be expected to 
work well outside their target area. Examples include the minimisation of 
sums of squares in nonlinear regression (Bard 1974), networking problems 
(Fisher et al. 1975), and geometric programming (Fletcher 1987, Fryer and 
Greenman 1987). If the problem can be formulated as one of these, the 
choice of an algorithm is clear, as these areas have been well investigated. 
When facing the optimisation of an unknown response surface of a 
simulation model, however, it seems more prudent to use one of the range of 
general gradient methods. 

GENERAL METHODS 

The simplest general methods are those which determine the direction of 
steepest ascent (Wolfe 1975). From the starting point, these methods 
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estimate the maximum positive gradient, and search in that direction. 
However, their performance can be somewhat erratic, as they are particularly 
prone to zig-zagging over successive iterations (Shor 1985), and have 
difficulty dealing with ravine-type functions (Polyak 1969). Powell (1964) 
outlines a method in which conjugate gradients are chosen. This adaptation 
has distinct advantages in performance over simple ascent methods 
(Radcliffe and Wilson 1990). Various computational schemes are available 
depending on the problem, including the well-known Fletcher and Reeves 
method (Fletcher 1987). These techniques have certain computational 
advantages over the Newton methods described below, and are often better 
suited to large problems. 

Newton's method remains the corner-stone of a second family of 
techniques (Smale 1986), and this method is used as an introductory 
example in many of the texts. Newton's method is based on a quadratic 
model, which is derived from a truncated Taylor series expansion of f(x) 
(Fletcher 1987). Solution of this quadratic model (in each dimension, for 
multi-dimensional problems) provides the next point for iteration. For 
smooth-surfaced problems which are well approximated by quadratics, 
Newton's method generally converges rapidly to an optimum. 

Methods which require the estimation of the inverse of the second 
derivative matrix are termed quasi-Newton, with performance generally 
similar to Newton's method (Polyak 1987). A range of improved 
formulations of the quasi-Newton have been proposed (Dennis and More 
1977, Dembo et al. 1982), and tested in case studies. One generalisation of 
these is the Broyden family of formulae (Fletcher 1987), which combine the 
Davidon, Fletcher and Powell (DFP) method and the Broyden, Fletcher, 
Goldfarb and Shanno (BFGS) formula (Fletcher 1982, Powell 1982). 
Numerical case studies have demonstrated similar performance between the 
DFP and BFGS (Fletcher 1987). Whilst these adaptations have certain 
advantages for particular problems, rarely will the user know the best choice 
of the required formula parameters to optimise an unfamiliar problem. 

For problems with a relatively high number of dimensions and a largely 
unknown response surface, either the general quasi-Newton or conjugate 
gradient methods appear most promising. For deterministic problems, 
Polyak (1987) concluded that the conjugate gradient method performed 
better than the quasi-Newton, which in tum was superior to a range of 
others. Conversely, Fletcher (1987) found that in practice the quasi-Newton 
was more robust than the conjugate gradient method, with resultant superior 
performance. Overall, there appears little difference between these when 
applied to the smooth, unimodal surfaces for which they were specifically 
developed. However, their performance on noisy, non-smooth real world 
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systems remains yet to be adequately tested (Polyak 1987), and may well be 
expected to be poor. 

TRANSFORMATIONS 

It is readily accepted that optimisation techniques require (at least) a 
scaling transformation if the various dimensions exhibit a range of scales 
(Fryer and Greenman 1987). Both the independent variables and the 
objective function should be scaled to approximately the same units, usually 
in the range 0 (or -1) to 1. Linear transformations are most commonly used 
to achieve this, but nonlinear transformations such as the square-root, power 
or log can be used if the particular variable displays the appropriate 
distribution. 

Duality involves transforming the original formulae or problem into an 
alternate formulation which has some theoretical significance, or is easier to 
solve computationally (Fletcher 1987). For certain types of problems this 
can improve the efficiency of gradient methods (Fisher et al. 1975), but it is 
difficult to imagine an overall method which would be applicable to the 
general optimisation of systems model output. 

Some of the more complex transformations include the space-variant 
developments, where dilation or contraction of the vector space is conducted 
(Balinski and Wolfe 1975). Shor (1985) outlines algorithms for space 
dilation along the gradient, which aim at widening the sometimes acute 
cones of ascent directions. Other techniques include relaxation methods 
(Camerini et al. 1975) and contraction mappings (Polyak 1987, Bertsekas 
and Tsitsiklis 1989). These transformation methods are somewhat 
specialised and suited to particular problem types, and as such appear to lack 
generality. 

CONSTRAINED OPTIMISATION 

Much has been documented on constrained problems, the constraints 
being either linear or nonlinear, and equality or inequality. Inequality 
constraints produce planes (of combinations of the variables) which intersect 
to define the feasible region, with combinations of values of the variables 
beyond these being infeasible. Equality constraints imply feasible planes 
through the hyperspace, which can then be searched efficiently by 
specialised techniques. In many agricultural models, inequality constraints 
are required to define physical ranges on the variables. Constraints 
involving more than one variable are less common, but still possible. 
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Fortunately, simple range (or bound) constraints are amongst the easiest for 
optimisation methods to cater for. 

For bound linear or non-linear inequality constraints, the use of penalty 
function methods has shown great universality (Polyak 1987). These 
methods add some penalty value to the objective function at infeasible 
locations, forcing the methods back into the feasible region. Extreme 
penalties, where a nominally large value is added, result in barrier functions, 
where violations are immediately rejected. Whilst effective, these barrier 
methods produce a cliff along the constraint, which is where the global 
optimum may actually occur. The resultant lack of smoothness can cause 
serious problems with gradient methods. More useful are linear or nonlinear 
penalty functions, which increase with the degree of violation. Figure 1 
shows examples, taken from the dairy model optimisations in Mayer et al. 
(1996a, 2000), of some of these commonly-used penalty function methods. 
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Figure 1. Penalty methods for violation eX> I) of a bounded variable. 

In some algorithms, a preferable way of dealing with constraints is the 
feasible directions method (Fletcher 1987). Here, any non-feasible variable 
value is projected back onto the nearest active constraint. For simple bound 



www.manaraa.com

APPLICATIONS OF ALTERNATE OPTIMISATION TECHNIQUES 41 

constraints, any value beyond a bound is merely set at that bound. For 
multi-variable constraints the implementation becomes more difficult, but 
this basic property is retained. 

Probably the most efficient technique for handling constraints, however, 
is the method of feasible gradients (Polyak 1987). ill this, active and 
near-active constraints are taken into account along with the surface gradient 
when determining the direction of the next iteration. Hence, the method 
rarely ventures out of the feasible region, but tends to track along any 
constraint which contains an optimal solution. This efficient heuristic is 
unique to the gradient-type optimisation techniques. 

PROBLEMS 

By their very nature and derivation, gradient-type methods have definite 
theoretical and practical shortcomings when applied to the optimisation of 
real-world system models. As outlined earlier, by design they converge to 
the (assumedly single) optimum of the system, so in practice they track 
up-hill to the closest maximum, which is unlikely (in multiple-optima 
systems) to be global. These methods retain no memory, and (unless lucky) 
cannot usually escape from local optima. The only exception here is the 
heavy ball method (Polyak 1987) which can 'roll across' relatively shallow 
local optima, but otherwise has displayed relatively poor performance. 

The second major problem concerns the rough, sometimes almost fractal, 
nature of potential response surfaces. Polyak (1987) contends that most 
results of minimisation studies on smooth functions will not extend to 
non-smooth problems, and this point has been demonstrated with a complex 
dairy model (Hart et al. 1998). The cliffs and occasional discontinuities of 
these surfaces can cause havoc with derivative estimates. Also, noisy or 
stochastic systems can cause problems, as gradient methods tend to be very 
sensitive to errors or outliers. 

AGRICULTURAL MODEL APPLICATIONS 

Given the limitations of gradient-type methods, it is not surprising that 
relatively few applications have appeared in the agricultural literature. Roise 
(1990) used the conjugate directions method to optimise spatial models of 
forestry stands, however these models were only small to moderately sized. 
Barioni et al. (1999b) showed that a generalised reduced gradient algorithm 
repeatedly failed to find the optimal configuration of a feedlot diet 
formulation problem. Generally, gradient methods have more been used as 
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'the traditional benchmark', against which alternate optimisation methods 
are shown to be superior, as in Hendrickson et al. (1988), Mayer et al. 
(1989), Wang (1991), Mayer et al. (1996a), Hart et al. (1998), Parsons 
(1998), and Kuo et al. (2000). 

3. DIRECT SEARCH ALGORITHMS 

As the name implies, direct search methods use only function (or model) 
values, retaining a certain population of input combinations which are 
iteratively improved. By not attempting to estimate the slope or curvature of 
the response surface, they traditionally have been termed ad hoc methods, 
and perceived as generally inferior. In practice however, these methods have 
proved to be worthwhile, especially for finding the global rather than a local 
optimum. 

One of the most commonly used methods is the simplex, proposed by 
Spendley et al. (1962) for the optimisation of factory production. Given a 
problem in n dimensions, a simplex is a collection of (n + 1) points or 
vertices, which (in the absence of linear dependencies) define a hypershape 
in the Euclidean space. In the literature, some confusion exists with the 
simplex solution method for linear programming (Lagarias et al. 1998), such 
that the general simplex optimisation method has sometimes been called the 
simplicial (Polyak 1987), or the polytope method (Gill et al. 1981). The 
original terminology is preferable, and has mainly been used in subsequent 
studies. The type of problem (general optimisation, or linear programming) 
adequately defines just which simplex method is in use. 

Algorithms using the simplex method start with a feasible point, and then 
generate a simplex either by random shifts or defined steps along each of the 
dimensions. Given this initial simplex, the worst point (i.e. for 
maximisation problems, the minimum function value) is discarded and the 
coordinates reflected through the centroid of the simplex, arriving in an area 
which is usually more optimal. The original formulation (Spendley et al. 
1962) dealt with a regular simplex, with manual adjustment required in the 
near-optimal region to prevent over-shooting. Subsequently, the refinement 
of NeIder and Mead (1965) (incorporating contraction and expansion steps 
during each of the iterations) has resulted in a robust general algorithm, 
capable of searching across the hyperspace before shrinking onto an 
optimum. The usual termination criteria is when all points, having 
contracted into an optimum, display approximately equal function values. 
The required precision of the termination criteria can be specified by the 
user. As with other techniques, scaling of the variables is recommended, 
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although this algorithm can expand along any of the 'longer' dimensions to 
accommodate moderate departures in scale. 

This method has been observed to flatten onto a constraining plane, when 
the optimal region lies along this plane. This effective loss of one dimension 
in the simplex can cause problems when another constraint becomes active 
and the method needs to 'tum the comer' (Box 1965). To cater for this, the 
'complex' was proposed (Box 1965), which is effectively a simplex with 
more than (n + 1) vertices. The iteration technique remains the same. Box 
(1965) suggested 2n vertices, but concluded that this choice is not critical. 
Whilst intuitively the complex should perform better than the simplex, in 
practice this does not appear to be the case (Box 1965; J.A. NeIder, pers. 
comm. 1992), and this method has not been widely used. 

The simplex algorithm has been proven convergent, on strictly convex 
functions in lower dimensions (Lagarias et al. 1998). However, more 
generally its theoretical properties have not been sufficiently investigated 
(Polyak 1987). In empirical test studies on smooth functions with few 
dimensions, the simplex method is clearly inferior to the gradient methods 
(Fletcher 1987, Polyak 1987). However, otherwise it has proven itself to be 
a very robust method across a wide range of real-world problems (Barabino 
et al. 1980, Bunday 1984). It remains a cornerstone in some of the 
well-known software libraries, such as the Numerical Algorithms Group 
(NAG) and the International Mathematical and Statistical Library (IMSL). 

CONSTRAINED OPTIMISATION 

Constraints cannot be directly incorporated into the search method, 
leaving the penalty function or feasible directions solutions as possibilities. 
Using a penalty or barrier function of adding some large value (as previously 
outlined), any projection outside the feasible region would be rejected. A 
smaller (contraction) step would then be used to obtain a new point, 
presumably within the feasible region and close to the constraint. If 
non-feasible points are projected back onto the constraint (the method of 
feasible directions), each new point in this direction will be on this optimal 
plane, unless the constraint is still a slight 'over-shoot' of the optimal value, 
in which case further iterations will contract away from the constraint. In 
practice, either of these constraint methods should work reasonably well 
with direct search techniques. 
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PROBLEMS 

In severely constrained situations, the initial generation of the required 
number of vertices can be of concern, but generally this is not a problem. As 
with other methods, possible convergence onto a local optimum remains the 
major problem. Once all the vertices of the simplex are within the basin of 
attraction of a local optimum, this method will converge to it. The simplex 
method has been shown to search around the Euclidean space more 
thoroughly than the gradient method (Mayer et al. 1991), resulting in a 
higher proportion of starting points converging to the global optimum. 
However, convergence to a local optimum remains a problem that only 
multiple starting-points or some random perturbation scheme can attempt to 
address. 

AGRICULTURAL MODEL APPLICATIONS 

Despite their theoretical shortcomings, direct-search methods have 
proven effective in a number of studies. For the calibration of grain-crop 
models to field data, both the simplex direct-search algorithm, and its 
extension to the complex, have been used successfully (Hammer and White 
1992, Hammer et al. 1993, Olsen et al. 1993). Hendrickson et al. (1988) 
showed the Hooke and Jeeves pattern-search algorithm to be a robust 
method, and preferable to the gradient method, for the calibration of a 
rainfall-runoff model. On a similar problem, an enhanced version of the 
complex algorithm proved superior to a genetic algorithm (Franchini et al. 
1998). 

The simplex algorithm has also performed moderately well in the 
optimisation of the economic performance of agricultural models. Mayer et 
al. (1989, 1996a) demonstrated its superiority to gradient methods on a dairy 
farm model. Botes et al. (1996) found the simplex to be more flexible and 
realistic than dynamic programming on a crop irrigation problem, and 
Parsons (1998) showed it to have (at best) comparable performance to a 
genetic algorithm in determining an optimal silage harvesting plan. 
Conversely, both Hart et al. (1998) and Kuo et al. (2000) showed the 
simplex to be inferior to a genetic algorithm, in the optimisation of dairy 
farm and irrigation scheduling models, respectively. 
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4. SIMULATED ANNEALING 

Simulated annealing is a term covering an evolving family of algorithms 
based on thermodynamical models (Davis and Steenstrup 1987). In the past, 
these methods have variously been called stochastic cooling, Monte Carlo 
annealing, probabilistic annealing, stochastic relaxation and probabilistic hill 
climbing. Their common link is that, by probabilistically accepting 
'backwards' (or less successful) steps, they can generally escape from local 
optima, to eventually find the global optimum. Their main disadvantage is 
the often excessive computation required to statistically guarantee this (van 
Laarhoven and Aarts 1987). 

Simulated annealing works by mimicking the annealing (cooling) process 
of metallurgy. This occurs when a molten substance is cooled slowly, 
allowing the particles to gradually align to reach a near-minimal energy state 
of mutual forces (Bohachevsky et al. 1986). If cooled rapidly, or quenched, 
many local energy maxima will be formed in the solidified product, and the 
highly-ordered, crystalline state of lowest energy will not be found (Corana 
et al. 1987). 

An algorithm to simulate cooling to the thermal equilibrium, based on the 
Boltzmann distribution, was originally proposed in Metropolis et al. (1953). 
Its application to optimisation problems was independently developed by 
Kirkpatrick et al. (1983) and Cerny (1985). In this algorithm, new points are 
sequentially generated, usually at random from a nominated probability 
distribution. If the new point has a lower energy content (in a minimisation 
sense), it is automatically accepted. If not, i.e., if the new point is less 
successful, it is subjected to the Metropolis criteria -

P = exp ( - E / kB T ), where 

P is the probability of acceptance, 
E is the change in energy values between the two points, 
kB is a parameter controlling the temperature schedule, and 
T is the temperature at this stage. 

As with true annealing, the results are largely controlled by the 
temperature process. At higher temperatures, 'backwards' steps are more 
likely, although not if they are greatly backward. At lower temperatures, 
nearer the solution, fewer backwards steps are accepted (Radcliffe and 
Wilson 1990). This behaviour allows the algorithm to initially search widely 
around the feasible hyperspace, and then zero in on the optimum as the 
temperature approaches the 'freezing point'. It is important to spend a 
considerable amount of effort in this stage, so that local instabilities (or sub
optimal arrangements) can gradually be removed (Kirkpatrick et al. 1983). 
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Hence the rate of temperature decline throughout the operation, termed the 
temperature schedule, is of critical importance. 

It has been proven mathematically that the probability of finding the 
global optimum approaches one, as the number of transitions (or trial values) 
tends to infinity (van Laarhoven and Aarts 1987). Herein lies an obvious 
problem, in that infinite runs are never possible. Under traditional 
Boltzmann annealing, the temperature declines inversely logarithmically 
with time, ensuring a slow and thorough search. However, even in this 
situation there is no absolute guarantee, and the method may still fail to find 
the global optimum of a multiple-optima system (Ingber 1993). 

The efficiency of Boltzmann annealing was improved with the 
development of fast annealing by Szu and Hartley (1987). They proposed 
replacing the Gaussian sampling distribution with the Cauchy, with the fatter 
tail of the latter allowing more efficient sampling (Ingber and Rosen 1992). 
Also, fast annealing uses a more rapid rate of temperature decline, namely 
inversely linear with time, giving a method which is exponentially faster 
than the original. 

Ingber (1989) introduced a further series of improvements, to arrive at a 
method termed 'very fast simulated reannealing'. Firstly, the multi
dimensional Cauchy distribution is used, rather than applying the easier one
dimensional form across the required number of dimensions. Secondly, the 
temperature decreases inversely exponentially with time, to give a more 
rapid search. Thirdly, reannealing introduces the process of adjusting the 
search in each dimension by adapting to the changing sensitivities of each 
parameter. This is implemented regularly during the search. In practical 
terms, reannealing results in the use of smaller steps with the more critical 
parameters, but larger searches along the insensitive dimensions. 

'Adaptive simulated annealing' was introduced in Ingber (1993). This 
method incorporated all the above advances, and added the refinement of 
dynamically adjusting the sensitivities of the search in each of the 
dimensions (hence the 'adaptive' feature appears a refinement of 
reannealing) . 

Recent trends are towards 'more greedy' or faster implementations, 
termed simulated quenching or tempering. These use a more rapid 
temperature decline, usually applied as a scaling factor on the rate of 
temperature decrease. These methods are computationally quicker, but more 
risky, as they are more likely to converge to a sub-optimal solution. 
However, this may be the only practical method of using the advantages of 
simulated annealing on very large problems, as conservative temperature 
schedules could take almost infinite time. Thus far, simulated quenching has 
been shown to be fairly robust, although only over a limited number of 
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applications (Ingber 1993). Optimal control parameters of these methods for 
a range of systems are yet to be determined. 

APPLICATIONS 

As may be expected with a robust optimisation technique, applications of 
simulated annealing and comparisons with other optimisation methods are 
becoming more common. Evaluations of simulated annealing on a suite of 
mathematical test functions (mostly of low dimensionality) are listed in 
Bohachevsky et al. (1986), Corana et al. (1987), Styblinski and Tang (1990), 
and Ingber (1993), with these generally confirming it as a successful 
optimisation method. Kirkpatrick et al. (1983) demonstrated that simulated 
annealing was surprisingly good at solving examples from the difficult class 
of NP-complete (nondeterministic, polynomial-time complete) problems, 
such as the travelling salesman problem, and computer design and 
component placement. Other allocation-type problems which have also been 
solved by simulated annealing include design, routing, and image processing 
problems (van Laarhoven and Aarts 1987), the allocation of the protein 
structure in squash seeds (Holak et al. 1989), and the visual determination of 
geometric shapes using very fast simulated reannealing (Wu and Levine 
1994). Statistical applications have also featured prominently, including 
evolutionary tree design (Lundy 1985), the determination of optimal 
experimental designs (Bohachevsky et al. 1986, Morris et al. 1993), the 
estimation of maximum likelihood parameters (Goffe et al. 1994), and the 
solution of over-parameterised nonlinear regression models (Mayer et al. 
1996b). A difficult optimisation of groundwater remediation strategies via 
modelling was solved successfully by simulated annealing (Kuo et al. 1992). 
This problem had previously defeated hill-climbing methods, which tended 
to converge to sub-optimal solutions. 

A number of applications to agricultural systems have also been 
successful. Considering the harvesting schedule for forestry blocks, 
Lockwood and Moore (1993) list a range of simulated annealing 
applications, with one covering some 27 500 blocks of trees. This is far in 
excess of the limit of 200 suggested by Roise (1990) using the conventional 
method of conjugate gradients. Bos (1993) also used simulated annealing to 
solve a forestry management problem, which had proved too 
computationally intensive for the branch and bound method. On a temporal 
harvesting model of a prawn fishery, Watson and Sumner (1999) adopted 
simulated annealing to avoid being trapped by the many local optima. The 
CERES-Maize agricultural model was calibrated to USA data (Paz et al. 
1999), using the simulated annealing implementation of Goffe et al. (1994). 
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5. TABU SEARCH STRATEGY 

The basic ideas of tabu (or taboo, Cvijovic and Klinowski 1995) search 
were developed in the field of combinatorial optimisation, over a number of 
years (Glover 1989). In this optimisation method, locations (being defined 
as vectors of the independent variables) which have previously been visited 
are earmarked as 'tabu', and thus not allowed to be re-visited. Under this 
constraint, the search scheme is forced away from current locations, which is 
a desirable feature if these optima are only local. By continually rejecting 
these sub-optimal regions, the tabu search method should eventually find the 
global optimum. Independently, Hansen and Jaumard (1990) developed 
their 'steepest ascent mildest descent' method in a study on the maximum 
satisfiability problem, first proposed in a conference in 1986. In practical 
terms this strategy is identical to tabu search, and the latter terminology has 
subsequently been adopted in the literature. 

The tabu search method is controlled by a number of operational 
parameters and strategies (Glover 1990a), the most important of which 
appears to be the length of, and method of maintaining, the tabu list. The 
reactive tabu search (Battiti and Tecchiolli 1994a) is a dynamic application 
which incorporates a number of the more advanced strategies, but these 
appear to be heuristics which are limited to their combinatorial optimisation 
problem. Tabu search is also a metastrategy which can and has been used 
with a number of other optimisation methods. In practical usage, it has 
predominantly been combined with hill-climbing techniques or problem
specific heuristics. 

Tabu search has been applied to a wide range of practical problems, 
including scheduling, allocation, sequencing, patterning, and planning 
applications (Glover 1990b). These problems are generally discrete in 
nature, but tabu search can be adapted to continuous problems by 
discretising each dimension (Cvijovic and Klinowski 1995), at the desired 
level of precision. This is similar to the approach used in binary genetic 
algorithms, and again mapping using Grey coding is recommended (Battiti 
and Tecchiolli 1994a). 

On combinatorial optimisation types of problems, tabu search has been 
shown to be most efficient, and it has out-performed a number of problem
specific heuristics (Glover 1989, Hansen and Jaumard 1990). On smaller or 
simpler problems, it generally performs similarly to simulated annealing 
(Battiti and Tecchiolli 1994b, Cvijovic and Klinowski 1995). However, with 
moderately-sized or large problems tabu search has been shown to be 
superior to simulated annealing, in terms of both solution quality and speed 
of convergence (Hansen and Jaumard 1990, Osman 1993, Battiti and 
Tecchiolli 1994b). On these larger applications, however, tabu search can 
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have problems maintaining an adequate length of the memorised tabu list 
(Glover I 990b). In the initial studies, only small tabu lists (of the order of 5 
to 12) needed to be maintained (Glover 1989). With larger problems, much 
larger lists are needed to prevent cycling back to sub-optimal solutions 
(Glover et al. 1993). Alternatively, Battiti and Tecchiolli (1994a) 
incorporate an escape heuristic to cope with problems where the search 
scheme is captured by wide local optima. 

This is indicative of the main problem concerning the wider application 
of tabu search to multi-dimensional studies. The majority of tabu 
applications have been combinatorial optimisations, which are mostly of a 
spatial (or temporal) allocation nature. Here, the search is basically in two 
dimensions, with the size of the problem being dependant on the number of 
nodes, objects and/or pathways to be allocated or assigned. Taking for 
example the quadratic assignment problem with L locations, the size of this 
problem is of order L2 (Battiti and Tecchiolli 1994a). Iflarger studies of this 
type are causing problems with tabu list lengths, then there appears little 
hope for true multi-dimensional applications which are of the order Xd, 

where d is the dimensionality and X the number of divisions in each 
dimension (and thus dependent on the required level of precision). 

This problem of the tabu search strategy is intuitively easy to understand. 
On arriving at a local optimum, the method begins searching around the 
local neighbourhood. Whether this is via complete evaluation or some 
neighbourhood subsampling scheme (Cvijovic and Klinowski 1995) is 
irrelevant here. Each surrounding point must be investigated and added to 
the tabu list to force the search away, into (hopefully) more profitable zones. 
Unless the entire surrounding region is excluded via assigning all points 
within it to tabu status, the method will keep sliding into adjacent 
dimensions to find 'near-optimal' solutions, rather than accepting the 
seemingly sub-optimal values. Hence, it will eventually return to the local 
optimum unless prohibitively long tabu lists are maintained. For example, a 
farm's profitability may primarily depend on the interaction between the key 
management variables of stocking rate, pasture species, irrigation, and 
fertiliser application. If a locally-optimal combination of these has been 
found, all surrounding locations (across all possible dimensions) will need to 
be added to the tabu list. However, the 'more minor' (in terms of their effect 
on farm profitability) management decisions, such as bull selection and ratio, 
mating period, culling rates and times, weaning, grazing patterns, etc., allow 
ample opportunity for the search to 'slide sideways' into these adjacent 
dimensions, whilst staying close to the local optimum of the key dimensions. 

Mathematically, consider a local maximum in a problem of d dimensions. 
If the 'valley' (being the barrier to a higher, more optimal region) lies n 
nodes (values of the independent variables) away, then N, the number of 
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neighbourhood points to be investigated and retained in the tabu list, is given 
(Mayer et al. 1998b) by -

The usual 'curse of dimensionality' applies here. Even with a 
moderately-sized maximisation problem of 10 dimensions, this gives N of 
about 10 million for a dividing valley only 2 nodes away, or 3 500 million 
for 4 nodes. Maintaining and checking tabu lists of these lengths is clearly 
infeasible. Obviously, no real-world problem will be symmetrical and 
equally-responsive in each of the independent variables being optimised, so 
the above equation is a guide only. The distance to the nearest ridge will 
probably be a different number of nodes away in each dimension, and some 
dimensions may well respond in a long, almost-flat slope or plateau. 
Regardless, this analysis gives an indication of the excessive length of tabu 
lists which would need to be maintained for highly-dimension or high
precision problems. 

APPLICATIONS 

Tabu search has been used widely on a range of allocation-type 
problems, and test functions which have only lower dimensionality (Battiti 
and Tecchiolli 1994a). Cvijovic and Klinowski (1995) used it on continuous 
test functions of up to 6 dimensions, but limited the number of divisions 
(nodes) in each of the dimensions, relying on a hill-climbing algorithm to 
finalise the optimisations. Faced with the difficulties (as outlined above) of 
even 6 dimensions, they only considered a crude level of discretisation in 
each dimension, to reduce the problem to a manageable size. This approach 
is unlikely to be useful in a practical sense with a large number of truly 
continuous variables. 

Tabu search has yet to be applied successfully to the optimisation of 
agricultural systems models. Hart et al. (1998) adopted a tabu-like list with a 
genetic algorithm in his study with a New Zealand dairy farm model. Here, 
previously-visited locations were stored in the computer's memory so that 
they did not have to be re-evaluated if called upon again. Mayer et al. 
(1998b) also used this facility, in combination with a simulated annealing 
optimisation of a dairy farm model, and struck problems regarding the 
necessary level of resolution of the continuous variables in the final stages of 
the optimisation. However, these approaches cannot be considered true 
applications of the tabu strategy, as the stored locations are merely used to 
save on computer time (by not having to re-run the simulation model). The 
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resultant values of the optimisable variables (farm milkfat production, and 
profit, respectively) are still returned and used in the respective 
optimisations, rather than this trial combination of input variables being 
excluded from consideration, as would be required under a tabu strategy. 

6. HYBRID METHODS 

Whilst many different variants exist of most of the basic optimisation 
techniques, they do tend to have their own distinctive respective 
methodologies. For example, hill-climbing, tabu search and simulated 
annealing each have one current solution (with perhaps some memory 
facility of the previous best, especially after a 'less-successful' move), whilst 
the simplex method and evolutionary algorithms maintain populations of 
solutions. Similarly, each method has its own particular rules regarding the 
generation and selection of new candidate solutions, as previously outlined. 

Hybrid methods involve the combined use of two or more of these basic 
techniques, either sequentially or in parallel. The most common hybrids in 
the literature appear to be genetic algorithms followed by an alternative 
method to 'fine-tune' the solution. The premise used here is that the genetic 
algorithm (usually binary) is good at the exploration phases of the search, 
and this is continued until most population members have converged to the 
near-optimal region. At this time, the discrete nature of the coding allegedly 
interferes with final convergence, so the hybrid method then switches to a 
local optimiser, such as the simplex (Wang 1991), or one of the gradient 
methods (Franchini 1996, Mayer et al. 1996a, Campbell et al. 1998, 
Franchini et al. 1998, Hart et al. 1998, Goggos and King 2000). Using two 
optimisation methods in sequence obviously involves more user effort, 
including extra computer coding, and decision rules on when best to switch 
across to the alternate algorithm. Most of these published studies claim this 
hybridisation to be a success, but (where listed) the degree of improvement 
over the genetic algorithm solution appears small - 0.13% in Mayer et al. 
(1996a) and 0.5% in Hart et al. (1998). Whether or not this improvement 
could equally have been gained by finer precision of the binary codings, 
better tuned options, and/or longer runtime, remains open to conjecture. 
Campbell et al. (1998) progressed from a hybrid of a binary genetic 
algorithm with a gradient method, to a real-valued genetic algorithm. This 
approach may well provide the best solution for systems where fine-tuned 
convergence is required. 

As opposed to running two or more algorithms sequentially, the true 
integration of different optimisation methods has proven to be more difficult. 
Annevelink (1992) incorporated a problem-specific local optimiser into the 
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fitness evaluation phase of a genetic algorithm, yet overall this remained 
primarily an implementation of an evolutionary algorithm. Because of their 
very nature, incorporating evolutionary algorithms with other optimisation 
algorithms - even the generic tabu search (lbarki 1997b) appears difficult. 
Ibarki (1997b) outlines the potential use of a simulated-annealing-like 
probabilistic acceptance scheme in the selection of parents or new 
population members, and Varanelli and Cohoon (1995) incorporated a 
simulated annealing heuristic on a combinatorial optimisation problem. 
However, neither these nor other adaptations have appeared subsequently in 
the applied literature. 

Conversely, the tabu search strategy is well suited to true integration with 
other schemes, in particular simulated annealing (Fox 1993, Osman 1993, 
Ibarki 1997b) and greedy randomised search (Feo and Resende 1995). 
However, these studies are all combinatorial optimisation applications, 
where the specific allocation-style nature of the tabu search logically aligns 
with the problem. Also, despite the claims, many of the hybrids listed in the 
literature remain of one basic optimisation type, with only one or more 
heuristics adopted from the alternate optimisation method. Just which 
heuristics are worthwhile appears to depend on the problem type. 

As yet, there is no overall agreement as to which of the hybrids work 
best, especially regarding the optimisation of systems models. Their best use 
would be in the adoption of useful heuristics from one method into another, 
but the profitable use of these cross-overs appear very problem-specific. 
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Chapter 5 

COMPARISONS OF OPTIMISATION 
TECHNIQUES 

In this chapter, theoretical studies which variously prove global 
convergence, or compare rates of convergence, are listed and contrasted for a 
range of optimisation methods. These results then lead to a consideration of 
empirical studies, on test functions, combinatorial optimisation problems, 
and systems models. Within the latter two classes, applications of different 
optimisation methods to agricultural systems are compared and discussed. It 
is concluded that when considering the optimisation of systems models 
across the range of problem types, evolutionary algorithms are likely to be at 
least as good as, and probably superior to, the other available optimisation 
methods. 

1. INTRODUCTION 

It is interesting to note that, in a number of disciplines, most optimisation 
methods have been proven convergent to the global optimum of the system, 
as the number of iterations approaches infinity. Using Markov chain theory 
on combinatorial optimisation problems, this property holds for simulated 
annealing (van Laarhoven and Aarts 1987), genetic algorithms which 
incorporate elitism (Peck and Dhawan 1995), evolution strategies (Back and 
Schwefel 1993), and evolutionary programming (Spears 2000). These 
results are consolidated in (Fogel 1995b), which shows that all of the 
different variations of evolutionary algorithms are globally convergent, 
provided they incorporate elitism (which means the ()l+A.) scheme of 
evolution strategies). Regarding rates of convergence on combinatorial 
optimisation problems, the expected quality of the simulated annealing 
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solution is less than or equal to that of evolutionary algorithms (regardless of 
binary or real-valued coding, with or without mutation, and with or without 
recombination, Hart 1996), and also less than or equal to repeated local 
random search (Ferreira and Zerovnik 1993). However, these results are 
more of academic interest only. They cover only a subset of potential 
optimisation problems, and are thus not directly applicable to large, general 
modelling studies. Also, the basic assumption of infinite iterations is 
unrealistic - if these were truly possible, the optimum would be easily found 
by complete enumeration. What is needed in practice are methods which 
give the best chance of finding the optimum (or a value acceptably close to 
it), within a reasonable or (at worst) feasible time frame. 

No discussion of optimisation theory would be complete without 
consideration of the 'no free lunch' theorem (Wolpert and Macready 1997). 
The basic premise here is that across all possible problem types, the average 
performance of all optimisation algorithms is equal, which further implies 
that the past performance of any algorithm has no possible bearing on its 
performance on future problems (Wolpert and Macready 1997). These ideas 
have formed the basis of considerable discussion and debate, particularly on 
the Genetic Algorithms Digest (http://www.aic.nrl.navy.millgalistl). Whilst 
theorists maintain this theorem to be mathematically proven and thus true, 
practitioners have tended to take a more pragmatic view - 'across all 
possible problem types' is an unrealistic concept, as problem types tend to 
divide into a number of discrete categories. Within each of these categories, 
previous studies on similar problems can surely be used as a guide to the 
expectation of future performances. 

Given the wide range of both optimisation techniques and the types of 
problems that they can be applied to, comparisons between these can be 
difficult to overview and interpret. An addition complication is that in many 
cases the developers or supporters of a particular algorithm have published 
empirical results showing their method to be superior to other contenders. It 
must be appreciated that these researchers are naturally up-to-date and will 
tend to have well-tuned parameterisations oftheir favourite method, and may 
well be testing this against out-of-date or ill-parameterised versions of their 
competitors. Also, perhaps subconsciously, they may be using test cases 
upon which they know or suspect that their algorithm will work well. 

As is intuitively expected, and proven by Wolpert and Macready (1997), 
there is no 'globally optimal' method of optimisation. Each technique has 
features which enhance its performance on particular types of problems, and 
alternately give the expectation of poorer performance on other problems. 
As outlined in Chapter 2, agricultural systems generally posses a range of 
properties which make optimisation difficult, and we thus need to look for 
methods which will perform well under these conditions. In other 
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disciplines, the more recently-developed algorithms have been rapidly 
gaining acceptance, at the expense of the more traditional hill-climbing and 
direct-search methods. For example, of the 21 papers in the 'Metaheuristics 
in Combinatorial Optimization' issue of 'Annals of Operations Research' 
(Volume 63, 1996), eight used tabu search, six applied simulated annealing, 
and five used genetic algorithms. 

2. TEST FUNCTIONS 

Mathematical test functions have traditionally formed the basis for 
comparisons between the different optimisation methods, and have been 
widely reported in conference proceedings and journals. These formulated 
functions range markedly in form and difficulty - from single-variable up to 
highly multidimensional; functions with a single optimum to those with 
multiple (local) optima; smooth surfaces with wide basins of attraction to 
more deceptive functions with quite narrow optima; and those with 
independence between the dimensions versus functions with interacting (for 
example, multiplicative) variables. As may well be expected, the 
performance of the available optimisation algorithms varies across these 
different classes of test functions. Also, results do appear to be correlated 
with the optimisation method backgrounds ofthese authors. 

On Rosenbrock functions of up to 10 dimensions, Corana et al. (1987) 
showed simulated annealing to be superior to the simplex direct-search 
method. Other supporters of simulated annealing, Ingber and Rosen (1992), 
showed it to perform better than or equal to a genetic algorithm, on functions 
of up to five dimensions. However, on their 30-dimensional function, the 
genetic algorithm repeatedly identified better optima than simulated 
annealing, despite taking longer to achieve these results. Mayer et al. (1991) 
showed that the simplex method outperformed hill-climbing, whereas Goffe 
et al. (1994) found both hill climbing and the simplex to be far less 
successful at escaping local optima than simulated annealing, which 
converged to the global optimum every run. Against these results, Battiti 
and Tecchiolli (1994b) demonstrated the tabu search strategy to be superior 
to simulated annealing, and on low-dimensional functions Cvijovic and 
Klinowski (1995) found tabu to be markedly more efficient than simulated 
annealing, hill-climbing and random search. Keane (1996) showed various 
evolutionary algorithms to be superior to simulated annealing, and within the 
former genetic algorithms identified better optima than either evolutionary 
programming or evolution strategies. This contrasts with Back and Schwefel 
(1993), where evolution strategies gave better results than genetic algorithms 
and evolutionary programming, and Fogel (1995a), in which evolutionary 
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programming beat genetic algorithms. In a more comprehensive comparison 
across eight test functions (Fogel 1995b), evolutionary programming was 
superior on five, and genetic algorithms on two, with one tie. Hinterding et 
al. (1995) also showed varying performance of the different variants of 
evolutionary algorithms - genetic algorithms proved superior on some test 
functions, and evolution strategies on others. 

One result contrary to the expectation of better performance from the 
more modern methods is listed in Styblinski and Tang (1990), where a 
stochastic version of the conjugate-gradient (hill-climbing) method 
outperformed simulated annealing. The test functions used here were 
polynomial-type with minor local perturbations, roughly conforming to the 
general smooth, unimodal shape where hill-climbing algorithms should 
succeed. It is unlikely that this result would carry over to more irregular 
surfaces. 

The major problem with basing strong inferences on test function results, 
however, lies in their very basis. Despite the possible range of complexities, 
they remain only test functions - as such, they are mainly smooth, of a 
similar scale (in each of the different tested dimensions), and frequently do 
not involve interactions between the dimensions. As demonstrated 
previously, this is most unlike the expected response surfaces of agricultural 
systems models. As Saloman (1996) and Hammel (1997) contend, these 
results are unlikely to extend to the optimisation of real-world problems. 

3. COMBINATORIAL OPTIMISATION PROBLEMS 

As with test functions, a multitude of comparative studies have been and 
are appearing in the scientific literature. Combinatorial optimisations are 
basically allocation or scheduling problems, and are essentially Euclidean in 
nature (i.e., they can be laid out in two dimensions, with varying numbers of 
nodes, pathways or objects to allocate). They are thus true real-world 
problems, and despite being very computationally challenging as the number 
of objects increases, they only represent the 'lower-end' of problem 
dimensionality . 

Studies which reported the values of the optima identified by the 
compared methods are summarised in Table 1, which does show somewhat 
mixed results. Here, both simulated annealing and tabu search appear to 
have the advantage, consistently returning optimal or near-optimal values. 
This relativity is maintained in Feo and Resende (1995), where these two 
were superior to a genetic algorithm. The best method in this study was their 
implementation of a greedy randomised adaptive search, with this algorithm 
also performing quite well in Ibarki (1997a). Genetic algorithms, including 
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hybrids, occasionally performed best in combinatorial optimisations (Table 
1), but do not appear overly well-suited to these. Between the different 
forms of evolutionary algorithms, genetic algorithms perform best on some 
problems, and evolution strategies on others, as was found in laminate 
design (Le Riche et al. 1995) and networking problems (Rothlauf et al. 
2000). 

Table 1. Relative performance (average % from global optimum) of optimisation methods#, 
on combinatorial optimisation problems. Bold entries indicate the best methodes) within each 
stud~. 

Source Random HC Heur. Tabu SA GA Hybrid 

search (type) 

Hesser et aJ. (1989) 0.00 0.00 0.00 

Osman (1993) 26.7 0.37 1.29 

Park (1995) 0.78 1.17 

Glass and Potts (1996) 0.58 1.11 0.36 1.51 0.28 

(GA/HC) 

Houck et aJ. (1996) 2.21 5.75 0.29 

Ibarki (1997 a) 0.05 0.09 0.01 

Ibarki (1997b) 0.09 0.02 0.53 

# Random = Random methods, HC = Hill-climbing (gradient), Heur. = Heuristic (prob1em-

specific), SA = Simulated annealing, GA = Genetic algorithm (binary) 

A number of other studies on allocation-type problems (Glover 1989, 
Hansen and laumard 1990, Osman 1993, Battiti and Tecchiolli 1994b) show 
examples where tabu search is superior to simulated annealing (in either 
terms of the optimal value obtained, speed of convergence, or both). 
Overall, tabu search would thus appear the 'best bet' for these types of 
problems, not withstanding possible authors' bias and the 'no free lunch' 
theorem (Wolpert and Macready 1997). This is probably because its 
methodology is directly related to optimisations of a Euclidean nature. 
However, it is unlikely that this result will extend to the optimisation of 
more general systems. 

4. SYSTEMS MODELS 

The comparison of different optimisation methods on systems models is 
of direct relevant to this monograph. Again, a range of studies has been 
published, as summarised in Table 2 for publications which have listed or 
graphed the respective optima of the compared algorithms. This list is far 
from complete, as the use of modern optimisation algorithms across a wide 
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range of application areas has snowballed in the past few years. However, 
we believe it to be fairly comprehensive in its coverage of agricultural 
systems - these types of applications dominate this table, particularly in the 
more recent publications. 

Table 2. Relative perfonnance (average % from global optimum) of optimisation methods#, 
on the optimisation of simulation models. Bold entries indicate the best method(s) within 
each study. 

Source HC Sx Heur. SA GAb GAr ES 

Bramlette and Cusic (1989) 0.95 

Mayer (1989) 11.1 3.00 

Bramlette and Bouchard 0.95 

(1991 ) 

Karr (1991) 

Wang (1991) 

Franchini (1996) 

Mayer et aJ. (1996a) 

Hart et aJ. (1998) 

Parsons (1998) 

Verryn and Roux (1998) 

Mariano (1998) 

Kozan (1999) 

0.00 

15.3 5.7 

5.93 21.1 

5.20 

14.7 

11.3 
7.9 

0.00 0.06 

0.00 0.06 

0.00 

0.08 

5.60 

0.00 0.32 

2.02 

0.00 

0.00 

0.00 

0.00 

Mayer et aJ. (1999a) 1.02 0.12 

Mayer et aJ. (I999b, 2001) 0.04 0.05 0.26 

Meszaros et aJ. (1999) 0.13 0.00 

Pabico et aJ. (1999) 2.02 0.00 

Kuo et aJ. (2000) 7.36 2.05 0.00 

Lu and Eriksson (2000) 7.13 0.00 

Hybrid 
(type) 

0.00 

(GAJHC) 

0.00 

(GAi/Sx) 

0.00 

(GA!Sx) 

0.00 

(GAt/Heur.) 

0.19 

(GAt/HC) 
1.47 

(GAt/Hc) 

# HC = Hill-climbing (gradient), Sx = Simplex (direct search method), Heur. = Heuristic 

(problem-specific), SA = Simulated annealing, GAb = Genetic algorithm (binary), GAr = 
Genetic algorithm (real-value), ES = Evolution strategy 

Throughout the earlier days of computational optimisation, only the more 
traditional hill climbing and direct search methods were available, and these 
have been used to effect on occasions. Despite the perceived theoretical 
advantages of the former, it is evident that the more robust simplex 
algorithm performed better on real-world models. This is probably largely 
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due to the irregularities and complexities of these problems, resulting in a 
non-smooth response surface, for which gradient methods are not well 
suited. Similarly to these results, Hendrickson et al. (1988) showed that the 
Hooke and Jeeves direct-search method outperformed a number of hill
climbing methods, on the calibration of model parameters with a 16-
dimensional rainfall/runoff model. Whilst hill-climbing methods show rapid 
convergence once within the basin of attraction around the global optimum, 
this feature also means they are prone to convergence to local optima 
(Horton 1996, Mayer et al. 1996a, Hart et al. 1998), and thus are not well 
suited to the optimisation of models. 

Tabu search is conspicuous by its absence in Table 2. Despite theoretical 
and demonstrated advantages in combinatorial optimisation type problems, it 
has yet to be used successfully on agricultural systems models. The 
underlying methodology of tabu search may be incorporated with other 
optimisation methods (Fox 1993, Osman 1993). This approach offers 
obvious potential for future problems, particularly if they contain spatial or 
temporal allocations. 

In the more recent years, the newer developments of evolutionary 
algorithms and simulated annealing have clearly shown their value (Table 2). 
These methods have consistently identified better optima than the earlier 
techniques, although usually at the expense of longer search times. The 
genetic algorithm of Meszaros et al. (1999) proved most efficient, 
identifying a superior optimum in just 104 model runs whilst a grid-search 
heuristic took an average of 107• A number of initial studies (Table 2) used 
hybrid methods with some success. However, as discussed previously, their 
improvement in realistic terms over the basic method (usually an 
evolutionary algorithm) is not great, especially considering the extra 
programming required and that the additional precision in the optimum 
could probably equally be obtained by a finer-tuning of the coded options, or 
running the evolutionary algorithms longer. 

The thorough search pattern of simulated annealing usually finds the 
global optimum, but this degree of success is related to the difficulty (in 
particular, dimensionality) of the problem. Table 2 shows a 'perfect score' 
for Bramlette and Cusic (1989), Bramlette and Bouchard (1991), Karr 
(1991), and Mayer et al. (1996a), with these studies having dimensionalities 
of 8, 8, 10 and 16 respectively. At these levels, simulated annealing can still 
cope, although the 16-dimensional study took 105 model runs to converge. 
In the two studies which reported sub-optimal performance of simulated 
annealing, Kuo et al. (2000) had 14 dimensions and Mayer et al. (1999a) had 
20 and 40 independent options. Interestingly, Ingber (1996) states that 
simulated annealing is computationally limited to problems of about 15 to 20 
dimensions, and recommends simulated quenching for larger studies. 
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However, as previously noted this method is not foolproof, and can converge 
to local optima (Ingber 1993, Mayer et al. 2001). 

The more recent studies in Table 2 point to the superior performance of 
evolutionary algorithms on these modelling problems. Binary genetic 
algorithms have been used most often, although real-value evolutionary 
algorithms have appeared of late. Here, we must admit to potential author 
bias - as our past publications indicate, binary genetic algorithms have been 
our preferred method of optimisation, and hence the most targeted in 
literature searches. However, other practitioners in the agricultural systems 
field appear to have adopted a similar path, also with success. It is unlikely 
that this trend would be greatly different for other disciplines. 
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Chapter 6 

ROBUST PARAMETERS FOR EVOLUTIONARY 
ALGORITHMS 

Whilst evolutionary algorithms have been well tuned for a number of 
different problems, finding the best combination of operational types and 
parameters remains an obvious challenge. In this chapter, various 
methodologies from the different underlying types of evolutionary 
algorithms are compared and contrasted in tum, particularly regarding the 
contribution of each option to the key processes of exploitation and 
exploration. The degree to which these options interact is then discussed, 
and an overall combination of 'best bet' operators is suggested. In the 
absence of other problem-specific information, this is recommended as a 
robust combination for the optimisation of future agricultural systems. 

As well as varying in their basic philosophies (i.e., genetic algorithms, 
evolution strategies or evolutionary programming, as overviewed in Chapter 
3), each of the forms of evolutionary algorithms has a wide range of 
operation types and parameters. The overall combination of all these 
operators controls the crucial balance between exploitation (using and 
combining the existing genetic material in the population to best effect) and 
exploration (searching for better genes). Overweighting of exploitation can 
lead to premature convergence (to a local optimum), as the algorithm 
focuses in on the area around the current best solutions. Conversely, over
exploration can waste time by continually breaking away and re-Iooking at 
SUb-optimal areas of the search-space. 

One valid criticism of evolutionary algorithms is that, unlike most of the 
competing optimisation methods, they have no definite termination criteria. 
Pelikan et al. (2000) and others have shown that the number of generations 
required for convergence is proportional to the square root of the problem 
size, and inversely proportional to selection pressure. Here, these 
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considerations also interact with population size - for a given amount of 
computing resources, is it better to have a smaller population and more 
generations, or vise-versa? Even when all (or most) of the population 
members have converged to an 'apparently optimal' set of genes, the 
mutation operator continually seeks to break solutions away from this, 
searching for more-optimal regions. In practice, most users of evolutionary 
algorithms tend to run them until 'apparent convergence', i.e., until the value 
of the optimum has not changed (or changed only minimally) over a large 
number of generations. As with all optimisation methods, replicated runs 
which converge to the same solution increase the user's confidence that this 
is the global optimum. 

Finding the best combination of operational parameters for any given 
evolutionary algorithm and problem is extremely difficult, if not impossible 
(Michalewicz and Fogel 2000). Given the number and options of each 
parameter, a complete evaluation will never be feasible. Davis (199Ib) and 
others have suggested using a 'higher-level' genetic algorithm to optimise 
the parameters of the 'lower' genetic algorithm. Unless trialed on only a 
very small or simple problem, this would also require too many runs to be 
practical, as each trial member of the population of the higher-level genetic 
algorithm requires a complete optimisation of the lower-level genetic 
algorithm. This effectively leaves any fine-tuning to be done 'manually', by 
the user. Here, each parameter is usually investigated in tum, whilst holding 
all others at 'near-optimal' or at least robust values. However, even this 
approach falls by the wayside when considering the often interacting effects 
of these operational parameters (Michalewicz and Fogel 2000). As we have 
found (Mayer et al. 1997, 1999a, 2001), in practice finding even near
optimal parameter settings can take considerable trial and error, with months 
of computational effort required to tease out these interactions - and even 
then, any 'definitive' results still tend to be partially confounded with each 
other. 

The different operational parameters of evolutionary algorithms have 
varying degrees of effectiveness - depending on the problem, some 
operators are critical to efficiency, whilst others may not be so important. 
As the key operators of recombination and mutation have been shown to 
have a synergistic effect (Fogel 1995b), the chosen evolutionary algorithm 
should use both. Other key decisions include the best coding of the problem 
under consideration, selection methods for both the parents and offspring, 
and the size and management of the population. 
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CODING OF MODELLED OPTIONS TO GENETIC 
REPRESENTATION 

The first choice facing the practitioner is the appropriate coding 
mechanism. The two commonly-used options are binary coding (where each 
of the model's management options is mapped onto one or a number of 
binary genes, with this number being dependent on the precision required for 
each), and real-value coding (where each gene is a numerical representation 
of one of the options being optimised). Of course, any level of alphabetic 
representation may be used profitably - Moore et al. (2000) used a three
level variable in a trinary genetic algorithm, because their forest harvest 
scheduling problem had three natural options. 

Supporters of the different evolutionary algorithm 'camps' have each 
reported the superiority of 'their' method. Pabico et al. (1999) and others 
claim that binary coding is preferable, even for the representation of 
continuous variables, because this makes best use of schemata. Conversely, 
Michalewicz (1996), and Fogel and Angeline (1997) suggest that the coding 
should represent the problem at hand, and that the one-to-one option-to-gene 
correspondence has a more 'natural' feel and performance. 

In practice, neither argument stands up for all problems. Typically, an 
agricultural model will have a mixture of discrete options (for example, 
which species of pasture to plant, whether or not to apply a supplement, and 
which types of supplements) and continuous variables (for example, 
fertiliser and irrigation levels, the length of the mating period, planting date, 
and culling proportions). Whether the discrete and continuous variables are 
coded to a fine-grained binary representation, or whether these are all 
represented by continuous variables (where the discrete options are based on 
a 'closest' value decision rule) is largely up to the user. As evident in Table 
2 of Chapter 5, historical applications have favoured binary applications, but 
these may well have been influenced by the wider availability (particularly 
in the English language) of genetic algorithm publications in that era. 
Interestingly, Campbell et al. (1998) started out with a binary genetic 
algorithm, and then progressed to one with real-value representation. Other 
examples of real-value coding are also listed in this table. Our series of 
studies (Mayer et al. 1997, 1999a, 2001) have used both binary and real
value representation, on the same problem (a large beef breeding model), 
both with success. 

In practice, there appears little difference in the performance of these two 
basic methods of coding (MUhlenbein and Schlierkamp-Voosen 1994), and 
by extension, any other representation should also work well. It is the effect 
of other key operational parameters on the chosen representation that really 
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drives the evolutionary algorithm. Provided robust values of these are used, 
the exact choice of coding appears less critical. 

POPULATION SIZE 

The number of members in the population is one of the most important 
choices that designers of evolutionary algorithms have to make 
(Michalewicz and Fogel 2000). Whilst adaptive sizes have been suggested, 
a constant population size is generally used, probably more because of 
convenience (Spears 2000). In determining this number, a balance must be 
obtained - a population which is too small will not contain the necessary 
genetic diversity required for the proper functioning of the evolutionary 
algorithm, but excessively large populations will slow the optimisation due 
to inefficiencies. As Saloman (1996) also notes, larger populations may be 
needed when the problem has interactions between the input options 
(epistasis). 

A number of theoretical studies have investigated the effect of population 
size (Goldberg 1989, Goldberg et al. 1992, Peck and Dhawan 1995, Smith 
1997, Pelikan et al. 2000, Pelikan and Goldberg 2001), and developed 
equations for estimating the optimal population size. However, these studies 
mostly investigated simpler problems with known properties, and their 
extension to larger, unknown models is speculative (Michalewicz and Fogel 
2000). With real-world problems, few users will have any idea of the 
necessary values for the variables in these formulae, such as the degree of 
difference between the average fitness values of different schemata, or the 
variance of the building blocks. One common result which can be used, 
however, is that the necessary population size is directly related to the 
problem size. 

An early rule of thumb from the binary genetic algorithms field is to take 
the population size as equal to, or slightly larger than, the number of bits 
contained in the representation of each member. This appears to work in 
practice - on the crop and irrigation scheduling model with 49 bits, Kuo et 
al. (2000) found a population size of 50 to be superior to both 30 and 100. 
On a 16-dimensional sheep breeding model with an unspecified number of 
bits (which, given the complexity of the coded management options, is likely 
to be towards 100), Horton (1996) showed a population of 50 members to be 
insufficient - these optimisations tended to converge to local optima. A 
population of 100 members was required here. Similarly, Hart et al. (1998) 
outlined a IS-dimensional dairy farm model (again, with an unspecified 
number of bits) upon which a population size of 10 proved inferior, with 50 
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required. On their simpler version of the model (6 dimensions), a population 
of 20 members proved adequate. 

Our series of modelling investigations using binary genetic algorithms 
have tended to be less conclusive - on the dairy farm model with 77 bits, 
approximately equal performance was obtained from populations of 40 and 
80 members (Mayer et al. 1996a). Similarly, population sizes of 30 and 50 
gave similar results and rates of convergence on the 20-dimensional beef 
model with around 80 bits (Mayer et al. 1999b). On the more difficult 
version of this beef model (40 dimensions and around 120 bits), for a given 
total number of model runs, approximately equal performance was obtained 
from populations of 30, 50, 100 and 150 members. Hence, the presence of 
more generations appears capable of making up any deficiencies of small 
population sizes. One counter-example is given in Parmar et al. (1996) - for 
a fixed number of runs (400) on a model with 6 dimensions and 12 bits, a 
population of 50 proved superior to 25 and 40. However, this result was 
obtained under 50% truncation selection, so maybe under this more extreme 
selection pressure higher population numbers were required to maintain 
genetic diversity. 

On agricultural problems with real-value coding, quite different relative 
population sizes have been used with success, indicating that perhaps this 
parameter is not so critical. High values were used in Meszaros et al. (1999) 
(populations of 300 to 1000 for a 9-dimensional problem), Cho and Lee 
(2000) (500 for an 8-dimensional model), and Davies et al. (2000) (5 
subpopulations each having 50 members, for an 8-dimensional problem). 
On a 51-dimensional greenhouse model, Polheim and HeiBner (1997) 
reported success of both a genetic algorithm with 4 subpopulations of 50 
members, and an evolution strategy with 3 subpopulations of 2 members. 
Mardle and Pascoe (2000) found the optimum of a very large problem (876 
dimensions) using only a relatively small population size of 70. Some 
comparisons of population sizes come from our studies of the beef property 
model - with 40 dimensions (Mayer et al. 1999a), populations of 100 and 
500 members appear better than 50, as exemplified in Figure 1 (from Mayer 
2000), although these results are somewhat confounded by changes in the 
other key operational parameters. On the 70-dimension version of this 
model (Mayer et al. 2001), populations of 200 members were consistently 
superior (being more optimal at all stages of the searches) than optimisations 
using a population size of 500. Hence, overall it appears that for real-value 
coding a 'good' population size will be at least greater than the number of 
parameters being optimised, but also that excessively large sizes do penalise 
progress. 
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Figure 1. Rates of convergence for (real-value) genetic algorithm optimisations of the beef 
property model with 40 dimensions. Solid lines are for populations of 50 members, dashed 

for 100, and dashed with gaps for 500. 

As well as choice of the overall population size, practitioners also need to 
consider the use of subpopulation methods to prevent premature 
convergence to a local optimum - these methods have also been termed 
sharing, deming, niching, speciation, and islanding methods (Goldberg 1987, 
Goldberg 1989, Davis 1991b, Spears 2000). Here, extra detailed coding is 
required, covering the definition and number of subpopulations, restrictions 
on mating, competition between subpopulations, similarity metrics, sharing, 
and migration. These methods have been shown to be effective in test cases 
(mostly test functions), which are obviously of 'known' form and shape. 
Here, the number and size of the subpopulations can be aligned with the 
expected number of optima, thus preventing under- or over-crowding 
(Michalewicz and Fogel 2000). Considering agricultural models, Polheim 
and HeiBner (1997) and Davies et al. (2000) used subpopulation methods, 
but without any 'whole-population' optimisation for comparison, the success 
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of this method cannot be judged. Determining a general subpopulations 
structure with the expectation of robustness across different and unknown 
problem types would appear daunting, and very difficult to demonstrate. 

One further note is that, in keeping with a number of operational 
parameters for evolutionary algorithms, population size cannot be considered 
in isolation (Smith 1997). Its effect on the progress of each optimisation 
interacts with the other key parameters - Schaffer et al. (1989) found a 
significant three-way interaction between population size, mutation rate, and 
recombination rate. A 'seemingly poor' population size (either too large or 
too small) can apparently be compensated for by appropriate choices of the 
other parameters. Overall, following the basic rules of thumb seems prudent 
- take a population size of either slightly larger than the number of binary 
bits, or somewhat larger than the number of real-value genes. As there are 
distinct disadvantages of having too small a population, but not much 
disadvantage to having a few too many population members, a safe choice 
would be to adjust the number upwards in doubtful situations. 

SELECTION OF PARENTS 

As evidenced by its key role in evolutionary programming and its 
potential for controlling the degree of exploration versus exploitation, 
selection can be used as one of the main driving mechanisms of evolutionary 
algorithms. The range of possible operators are well described in texts 
(Davis 1991 b, Michalewicz 1996, Back et al. 1997 a), and include fitness 
proportional (also called Roulette-wheel, where each population member is 
allocated a selection probability based on its fitness value), scaled fitness 
proportional (where the fitness values are linearly or nonlinearly scaled prior 
to the allocation of selection probabilities - this also solves the problem of 
any negative fitness values), ranked proportional (similar, except the 
probabilities are based on the rankings of fitness), truncation (where only a 
chosen percentage of the population is used), Queen bee (the elite population 
member is always used as the first parent in each mating), and tournament 
(two or more members are taken at random, and only the best of these used 
as a parent). 

Each of the selection techniques can be used to exert more or less 
selection pressure, as required by the user. Obviously, a smaller percentage 
in truncation selection will focus the search around the elite individuals. The 
allocated probabilities under any of the proportional selection schemes can 
be used to exert greater or lesser selection pressure. Under tournament 
selection, larger tournament sizes result in more pressure, as it is more likely 
that the top value each time will be from near the top of the list - for 



www.manaraa.com

68 EVOLUTIONARY ALGORITHMS & AGRICULTURAL SYSTEMS 

example, with n individuals being chosen for each tournament, the poorest 
(n-l) members can never be chosen as a parent. Blickle (1997) 
demonstrated a relatively high loss of diversity (and hence high selection 
pressure) when using n = 5. 

As Hancock (1997) notes, the concept of selection can be used to 
somewhat bridge the apparent gap between evolution strategies and genetic 
algorithms. Each generation, an evolution strategy generates 'many' 
offspring, with only the best of these then taken forward to the next 
generation, and used as parents. Genetic algorithms traditionally generate 
fewer offspring, and (proportionally) take more forward - but if truncation 
or a high-pressure selection method is used, the next parents will generally 
be from the 'top portion' of the members, which roughly equates to the 
evolution strategy method. 

A number of theoretical studies have demonstrated the approximate 
equivalence of some of the selection techniques - different implementations 
of tournament, truncation, and ranked proportional selection can give the 
same expected number of offspring per parent (De Jong and Sarma 1995, 
Blickle and Thiele 1997). From a practical viewpoint, it has long been 
acknowledged (Goldberg 1989) that fitness proportional selection can have 
problems with a 'bad' distribution of fitness values (especially early in the 
search, when one or more 'good' population members stand out). 
Appropriate scaling, or ranking, of the fitness values can solve this. Under 
any of these Roulette-wheel selection schemes, the fitness values have to be 
summed, and the selection probabilities reallocated to individuals, each time 
the population membership is changed. This is no problem if generational 
replacement is used, but under steady-state replacement (which is now 
usually recommended), this reallocation is required with the addition of each 
new population member. From a computational viewpoint, this is clearly 
inefficient. Conversely, tournament selection does not have this overhead, 
and can easily be implemented with steady-state replacement. 

Applications to agricultural systems models illustrate the wide range of 
possible selection methods (Appendix 1). Here, the proportional selection 
methods have tended to dominate historically, despite the recent trend 
towards these becoming generally less common in the wider evolutionary 
algorithm field (Michalewicz and Fogel 2000). With binary genetic 
algorithms, Parsons (1998) found the performance of scaled fitness 
proportional and ranked proportional selection to be approximately equal, 
whereas in Mayer et al. (1 999b) the ranked version was consistently inferior. 
Tournament selection, usually with low tournament sizes (two or three), has 
also been used successfully (Appendix 1). 

Overall, results suggest that choice of selection method is not too critical, 
as all of the available options appear to work quite well in practice. 
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Considering computational efficiency and results from the wider 
evolutionary algorithms literature, tournament selection (with a tournament 
size of two) is recommended. If more selection pressure is desired, then 
truncation selection or a larger tournament size could be used. 

REPLACEMENT STRATEGY 

Historically, generational replacement has been widely used. Under the 
evolution strategy approach, a population with f.! members generates 'A 
offspring (where 'A > f.!). These offspring are then available for the next 
generation - either to totally replace the original parents under the (f.!,'A) 
scheme, or to compete with the parents for placement in the next generation 
(f.!+'A). The original form of genetic algorithms generates as many offspring 
as there are members in the population, with these then replacing the parents 
to form a new generation (this is termed a generation gap of one) - which 
thus equates to a (f.!,f.!) scheme. Here, the use of elitism (where, at least, the 
best parent is automatically retained) was strongly recommended (Jones 
1995, Michalewicz 1996). 

More recently, steady-state replacement of population members has 
become more the norm, with only the poorest individuals (or single 
individual) of the population being replaced at each step. This ensures the 
retention of the best parents, and also makes the new offspring immediately 
available to the optimisation (which is advantageous, as they should be 
amongst the 'best' individuals at any time). The question of whether to 
exclude duplicates also needs to be considered - obviously, a computational 
overhead is required to test if offspring are direct copies of any parent, with 
this test having possible resolution difficulties with real-value co dings (i.e., 
how close do the values have to be to be considered equal?). Also, this may 
well interfere near the end of the optimisation, where most population 
members are expected to converge to the globally optimal solution. As the 
inclusion of duplicates does not appear to penalise performance, most 
evolutionary algorithms merely accept them. 

When adding the new individuals to the population, the replacement of 
the current members can be deterministic (where the worst, or lowest-fitness, 
individuals are automatically deleted), or stochastic (where some form of 
random rules are used to determine which population members are replaced). 
As the latter method can result in the retention of some of the poorest 
individuals, at the possible expense of the best or the 'elite' members of the 
population, it appears a less optimal method (unless the user has a specific 
reason for adopting this). Hence, steady-state (continuous) and deterministic 
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replacement of the worst population members by the best generated 
offspring is recommended. 

MUTATION 

Mutation has a number of different roles in the progress of an 
optimisation. Early on, it allows a degree of exploration as some of the 
model's options are changed to different values. In the mid stages, it 
provides an escape mechanism, for optimisations which may have converged 
(largely through recombination) to a local optimum. In the later stages, 
mutation helps the convergence of each option onto the global optimum. 

This operator was always used as the key driver of the evolution 
strategies approach, whereas under the traditional genetic algorithms it was 
perceived as only a background operator. In the latter, only small mutation 
rates (around 0.001 to 0.01) were used, although under binary 
representations the rate of mutation of any single option would be higher, as 
each of these options generally maps onto a number of bits. More recently, 
under the more generic evolutionary algorithms approach, much higher rates 
have been used (Hinterding et al. 1995, Michalewicz 1996, Back 1997). 
Morimoto and Hashimoto (1996) point to recent studies in molecular 
biology to justify their rather extreme mutation rate of 0.8. Higher values 
obviously tend to be quite disruptive of existing schemata (Spears 2000), and 
can interfere with convergence. Variable mutation rates have been 
proposed, but these have tended to give only marginal improvements 
(MUhlenbein and Schlierkamp-Voosen 1994). Of course, the evolution 
strategies method carries self-adapting standard deviations which control the 
degree of mutation as the optimisation progresses, but this is at the expense 
of the doubling of the effective parameter space. 

Some studies have been conducted on mutation rates, showing the 
optimal rate to be largely problem-dependent (Hinterding et al. 1995, 
Michalewicz 1996, Back et al. 1997b). For real-value representation, a 
lower bound is lin (Back et al. 1997b), where n is the number of genes or 
coded model options. At this value, the expectation is for one option to be 
mutated per offspring. This has been recommended as a reasonable heuristic 
for the range of unknown problems (thus including systems models), for 
which it is impossible to derive analytical results (Back 1997). Alternately, 
Saloman (1996) contends that more than one gene needs to be mutated per 
offspring, for effective progress in real-world cases. On test functions, 
Hinterding et al. (1995) found SIn to be optimal. 

Regardless of the chosen mutation rate, the available methods of 
implementing mutation also vary somewhat. For binary representation, the 
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mutation of each bit is a straight-forward bitflip - changing the value to its 
complement. For higher-level representations, a range of methods exists. 
Boundary mutation shifts the mutated option to either its upper of lower 
boundary (randomly determined), which can be useful for models where this 
may be expected for the optimal solution. Uniform random mutation 
changes the value to a point chosen randomly (within the specified bounds). 
More common, however, are the 'centre-heavy' methods, where small shifts 
in the value have higher probability, although larger shifts are possible. 
These include the delta (triangular) method, and from the statistical field use 
of the Normal or Gaussian distribution, along with the Cauchy (which is 
similar, but has comparatively fatter tails). The width of these distributions 
(as usually specified by their standard deviation or variance) can be fixed, or 
be included as self-adapting parameters in the optimisation (under an 
evolution strategy approach). 

In practice, widely differing types and rates of mutation all tend to work 
well with agricultural models, as exemplified by the ranges used in 
Appendix 1. Direct comparisons here are few, and give few insights. In a 
binary genetic algorithm, low-level 'background' mutation rates of 0.001, 
0.005 and 0.01 all performed similarly (Mayer et al. 1 999b). On the same 
model with real-value representation, a variety of mutation types was trialed, 
with rates of up to 0.25, all with success. Using an evolution strategies 
approach, the only real failure noted (being 1.5% short of the global 
optimum) was with nil mutation (using recombination only). Any mutation 
(rates here varied between 0.001 and 0.6) generally worked (Mayer et al. 
1999b). One interesting result here was that 'double mutation' performed 
best. This approach used lower-level Gaussian mutation (at a probability of 
0.05) combined with higher-level boundary mutation (probability of 0.20). 
However, extending this multiple mutation to 12 different combinations of 
both types (Gaussian, boundary and uniform random) and rates (ranging 
from 0.02 to 0.50) gave poorer performance than the basic double-mutation 
combination (Mayer et al. 2001). These results, however, may be particular 
to the model studied, which had the optimal solution with a number of its 
management options on their respective boundaries. 

Overall, a wide range of mutation types and rates have been shown to 
work well. Again, this parameter cannot be considered in isolation from the 
other operational parameters of the evolutionary algorithm. It can be used as 
the primary driver of exploration and fine-tuning, or merely as a background 
insurance-type operator. The use of double or multiple mutation operators 
appears to offer some promise. 
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RECOMBINATION 

In the original binary genetic algorithms, recombination (alternately 
termed crossover) was considered the main driving force. Here, high 
recombination rates (being the probability that recombination is applied) 
were traditionally used (Goldberg 1989). Recombination has also proven to 
be one of the most important with the more recent generic evolutionary 
algorithms. Michalewicz and Fogel (2000) question whether the high rates 
used for binary representations necessarily flow across to alternate codings. 
However, good results have been obtained across virtually the whole range 
of rates (0 to 1) (Park 1995), so this value of the recombination rate appears 
less critical. 

Recombination can take a number of very different forms, all of which 
provide a mixing of the genetic material of the selected parents. The 
simplest (and original) was a one-point crossover, where the parents' genes 
were crossed at one randomly-chosen point. This concept logically extends 
to two-point, or three, or up to n-point crossover, where n is the number of 
coded genes. Here, a random choice is made between the parents for each 
gene, and this method is also termed uniform crossover (Saloman 1996). 
Also available is majority-logic recombination (Michalewicz and Fogel 
2000), where the dominant gene from more than two parents is chosen. All 
these forms of recombination can be applied with either binary or alternate 
representations, as for each gene they effectively take the value of one of the 
parents. 

Under real-value codings, other recombination operators are also 
available. Intermediate arithmetical recombination results in a randomly
chosen value which lies between the values of the two parents. This tends to 
be a contractive operator (subsequent generations will tend towards the 
mean), and if used needs to be balanced by an expansive mutation operator. 
Alternately, extended arithmetical crossover allows values outside the range 
of the parents (up to the specified bounds), so is an expansive version of this 
operator. Also available (but little used) is simplex recombination, where 
the simplex algorithm (NeIder and Mead 1965; see Chapter 4) is applied 
with more than two parents, to determine the new value of each gene. 

Again, the form of the chosen recombination operator can be used to 
balance exploration versus exploitation. Those which cause minimal 
disruption of the parents' values (for example, one-point crossover) tend 
towards exploitation, whereas the more disruptive forms such as extended 
arithmetical recombination lean heavily towards exploration. In theoretical 
analyses, Spears (2000) has proven what is logically apparent - the more 
disruptive forms of recombination increase the rate of destruction of existing 
'good' schemata, but balance this by increasing the rate of construction of 
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new schemata. Hence, the optimal type and rate of recombination will be 
problem-dependent. 

As with many evolutionary algorithm operators, comparisons between 
the different forms have met with somewhat mixed results. On a suite of test 
functions, Schaffer et al. (1989) demonstrated two-point crossover to be 
marginally better than one-point. With network designing, Rothlauf et al. 
(2000) found uniform and one-point crossover to perform equally well, 
within both genetic algorithm and evolution strategy frameworks. On a 
silviculture harvesting problem, Lu and Eriksson (2000) suggested two-point 
crossover at a rate of 0.9 during the search (exploration) phase, and one
point at 0.5 for fine-tuning. Our series of optimisations of a real-value coded 
beef model (Mayer et al. 1999b), also across genetic algorithm and evolution 
strategy frameworks, pointed to a slight advantage of uniform and one-point 
crossover over extended arithmetical recombination. 

Whilst Jones (1995) contends that recombination is not advantageous on 
all problems, Fogel (1995b) and others maintain that recombination and 
mutation (in particular) have a synergistic effect, and always should be used 
in combination. Spears (1997) also shows that the effect of recombination 
interacts with population size - high recombination rates are required for 
small populations (and vise-versa), whilst the whole range of rates works 
well with medium population sizes. In an early recommendation which still 
appears appropriate, South et al. (1993) suggest a rate of 0.95 with a smaller 
population for fast optimisation, and 0.45 with a large population for a 
slower and more thorough operation. Overall, a robust choice would appear 
to be a moderate to high rate (around 0.80) with a 'medium-disruptive' type 
such as uniform. 

OVERALL 

As has repeatedly been demonstrated, and in line with the theorem of 
Wolpert and Macready (1997), the range of operational parameters will have 
varying effects, dependent mainly on the problem type (Goldberg 1989, 
Davis 1991b, Fogel 1995a, Horton 1996, Michalewicz 1996). Drawing all 
these parameters together into a robust 'best-bet' set at first appears difficult 
(Michalewicz and Fogel 2000), and yet there are some areas of good 
agreement. 

Firstly, the historical 'great debate' of which form of evolutionary 
algorithm is best is no longer an issue. Whilst the genetic algorithms style 
tends to be better at global searches, and evolution strategies superior for 
local (Polheim and HeiBner 1997), any form which uses selection, mutation 
and recombination conforms to the basic evolutionary doctrine, and should 
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be effective (Miihlenbein and Schlierkamp-Voosen 1993, Beyer 1997). 
These key operators have a synergistic effect, and algorithms which do not 
include all three have proved inferior (Blick and Schwefel 1993, 
Michalewicz 1996). They also have differing degrees of effect as the 
optimisation progresses - through heritability studies, Mtihlenbein and 
Schlierkamp-Voosen (1994) demonstrate how evolutionary algorithms are 
initially driven by recombination, and then by mutation near the end. 

Another decision to be considered is whether to use the key operators of 
mutation and recombination together in the generation of each offspring, or 
whether to use these in parallel (where each new member is generated either 
by mutation, under an evolution-strategies type method, or by 
recombination, as per genetic algorithms). The former is the traditional 
approach, with the latter as suggested by Davis (1991b) and used in some 
implementations - for example, Genial (Widell 1997). The separate 
application of these operators has the advantage of allowing them to have 
different levels of influence as the optimisation proceeds. Of course, when a 
member produced here by recombination subsequently undergoes mutation 
(say, in the next generation), this equates to the simultaneous application of 
both operators. Hence, this choice of approach is perhaps not so critical. 

For the effective solution of future unknown problems, a consolidation of 
all results leads us to recommend the following as a likely robust set of 
operational parameters for evolutionary algorithms. Of course, different 
users can and will experiment with alternate values and options, to find those 
most suited to their problem. 
- Coding of the modelled options to genetic representation. Either binary 

or real-value coding can be effective in practice. The choice largely 
depends on which is more aligned with the problem on hand, as well as 
the capabilities of the chosen evolutionary algorithm. 

- Population size. Populations which are too small tend to be suboptimal, 
whereas an overly-large population does not appear to penalise the 
optimisation much. Hence, the 'safe' options of a population size greater 
than the population members' number of bits (for binary representation), 
or around twice the dimensionality of the problem (for real-value 
representation), should be used. 

- Selection of parents. Tournament selection is recommended, as it is 
equivalent to most of the available methods, but computationally more 
efficient. A tournament size of two appears a good default, but higher 
values can be used if more selection pressure is desired. 

- Replacement strategy. The deterministic replacement of the worst 
population members by the best generated offspring, on a steady state 
( continuous) basis, appears best. 
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- Mutation. Good performances from a wide range of mutation types and 
rates have been demonstrated. Robust options are lower-level rates 
(around 0.01 to 0.05) of bitflip for binary genetic algorithms, and 
Gaussian mutation for real-value coding, at a rate of at least the inverse 
of the number of genes. The simultaneous use of two different mutation 
operators shows promise. 

- Recombination. Studies suggest that a moderate to high rate (around 
0.8), using a 'medium-disruptive' type such as uniform, should work well 
across a range of problem types. 
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FUTURE DEVELOPMENTS 

Evolutionary algorithms are continually being adapted and enhanced, in a 
wide range of disciplines. Both theoretical and applied publications appear 
regularly, and conferences in a number of evolutionary themes continue. 
Most obviously, theoretical studies are always useful, as existing theories on 
just how evolutionary algorithms work (particularly with regard to the 
interactions between operators) are currently unsatisfactory (Beyer 1997). 
These theoretical developments need to both expand the formal 
mathematical basis for the estimation of optimal parameters, and to justify 
heuristic results (Michalewicz and Fogel 2000). 

From a practical point of view, a number of future analyses and 
approaches appear to have merit. Spears (2000) suggests that the range of 
different problems be categorised according to generic type, and that optimal 
parameters for evolutionary algorithms be found for each of these types. 
This task would be lengthy and difficult, but if achieved would give users a 
suite of well-tuned algorithms for use on their particular problem. 

Schwefel (1997) contends that further progress in evolutionary 
algorithms will be made by reverting back closer to nature. In particular, 
multiple selection criteria (to mimic multiple predators or dangers), diploid 
representation with dominance and recessiveness rules, and simulating sexes 
and mating behaviour are all suggested here. 

Researchers are continually finding improvements for evolutionary 
algorithms, ranging from minor fine-tunings to breakthrough methods. 
Some of these are particular to the systems or problems being studied, and 
some will have wider application. The list of possible developments 
currently under investigation includes alternate and improved operators and 
codings, self-adapting mechanisms, subpopulation methods, the 
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incorporation of hybrids and heuristics, and Bayesian operators (Pelikan et 
al. 2000). 

Historically, systems researchers in the agricultural field have tended to 
be 'late adopters' of evolutionary algorithm developments. Under this 
conservative approach, the new techniques (here, genetic and evolutionary 
algorithms) need to be well proven in other fields before being widely 
adopted. This 'wait and see' approach avoids the possible errors and pitfalls 
of unproven developing technology, but also imposes a penalty of not using 
the best methods as they become available. It is hard to see this changing in 
the future, although the challenge of optimising larger and more difficult 
systems models may well force agricultural researchers to use the most up
to-date evolutionary methods. 
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Applications of evolutionary algorithms to agricultural systems. 
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Reference Problem type Type ofEA# Objective Search No. of 
function sEace Earams. 

Annevelink Spatial allocation in BinaryGA Gross margin of 
(1992) greenhouse operation 

production 
Arias et al. Climate control for Real-value Total heating 

(1998) greenhouse lettuces GA costs 

Barioni et Grazing and fertilizer GA Farm gross 22 

al. (1999a) management ofNZ margin 

sheep farms 
Cacho and Multi-year farm BinaryGA Farm gross 106 2 

Simmons investment strategies margin 

(1999) 

Campbell et Fitting model Real-value, In(Residual sum 42 

al. (1998) parameters to data for binary GAs of squares) 

pesticides in wool 
Cho and Route optimisation Integer GA Residual mean 8 
Lee (2000) for autonomous square 

orchard sprayer 
Davies et Experimental design Integer GA Nonlinear 1.7 x 8 
al. (2000) for silage function of costs 106 

improvement trials and biochem. 
parameters 

Franchini Calibration of model Real-value Residual sum 1023 - 11-

(1996, parameters GA of squares 1033 13 

1998) 

Goggos and Dynamic temperature BinaryGA Absolute error 

King (2000) control for (integrated over 

greenhouse time) 

production 
Hart et al. Herd and paddock BinaryGA Farm's milkfat 1033 6, 
(1998) management of a production 15 

dairy farm 
Hayes et al. Mate selection in BinaryGA Estimated 4-
(1997) controlled breeding breeding 20 

program values 

#EA: Evolutionary Algorithm; GA: Genetic Algorithm; ES: Evolution Strategy 
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Popn. Gener- Repli- Parent Replac. Recombination Mutation 

size ations cates selection strategy Type Probability Type Probability 

Roulette- Elitism I-point Bitflip 

wheel 

10- 150 Roulette- Elitism I-point 0.90 Gaussian 0.15 

20 wheel 

40 25 0.60 0.01 

100 200 100 Roulette- Generat I-point 0.60 Bitflip om 
wheel -ional 

(scaled replace 

scores) -ment 

80- 80-

150 100 

500 Toum- 0.70 0.05 

ament 

50 5 Roulette- (1i+A) ~ I-point 0.60 

wheel 

(scores) 

125 - 40 10 Roulette- Elitism 2-point Random 0.01 

500 wheel 

(ranks) 

Roulette- Elitism 

wheel 

(scores) 

10,20, 1000 10 Toum- 2-point, Bitflip 

50 ament uniform 

(2 or 3) 

5- 8- Bitflip :;; 0.40 

30 105 
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Reference Problem type Type ofEA# Objective Search No. of 

function sEace params. 

Horton Genetic improvement Binary GA Expected 1016 16 

(1996) in Australian sheep- economic gain 
breeding industry 

Husmann Energy supply for Binary GA Total annual ~6 

and Tantau floriculture heating cost 
(2001) greenhouses 
Kozan Dispatch processes in Discrete- Total distance 1019 21 

(1999) pot-plant nursery value GA covered 

Kuo et al. Irrigation, area and BinaryGA Region's gross 1015 14 

(2000) crop scheduling margin 

Luand Harvest scheduling of BinaryGA Net present 650 
Eriksson forestry stands value 
(2000) 
Mardle and Management of Real and Fisheries 876 
Pascoe English Channel integer GA profit 
(2000) fisheries 
Mariano Water distribution BinaryGA Network 109 8 
(1998) networks for cost 

irrigation 
Mayer et al. Management of a BinaryGA Farm gross 1023 16 
(1995, dairy farm margin 
I 996a) 

Mayer et aJ. Trading (buying and BinaryGA I O-year net 1050, 20, 
(I 999a) selling) strategies for present value 10100 40 

beef breeding 
property 

Mayer et al. Trading (buying and Binary GA 10-year net 10100 40 

(1999b) selling) strategies for present value 

beef breeding 

property 

#EA: Evolutionary Algorithm; GA: Genetic Algorithm; ES: Evolution Strategy 
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Popn. Gener- Repli- Parent Replac. Recombination Mutation 

size ations cates selection strate~y 
Type Probability Type Probability 

50- 120 10 Roulette Elitism 10-point 1.00 Bitflip 0.20 

100 -wheel - best 4 

(scaled retained 

scores) 

30 60 Bitflip 

Roulette- 2-point 1.00 Node-

wheel swap 

(scores) 

30- 100- Roulette- Generat I-point 0.60 Bitflip 0.02 

100 800 wheel -ional 

(scores) replace 

-ment 

200 1000- Roulette- I-point, 0.50 Bitflip 0.001 

2000 wheel 2-point -0.90 -0.02, 

(ranks) dynamic 

70 105 Roulette- Elitism n-point 

wheel 

Roulette- Uniform 0.60 Bitflip 0.01 

wheel -1.00 -0.10 

(ranks) 

40,80 125, 48 Roulette- Elitism I-point 0.45 Bitflip 0.001, 

250 wheel -0.95 0.01 

(scores, 

ranks) 

30,50 4xlO4 9 Roulette- Elitism I-point 0.60 Bitflip 0.001, 

-106 wheel 0.01 

(scores, 

ranks) 

30- 3xl04 8 Roulette- Elitism I-point 0.40 Bitflip 0.001 

150 wheel -0.80 -0.01 

2xlOs (scores, 

ranks) 
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Reference Problem type Type ofEA# Objective Search No. of 

function space params. 

Mayer et aJ. Trading (buying and Real-value 10-year net 10100 40 

(I 999b) selling) strategies for GA present value 

beef breeding 

property 

ES 

Mayer et aJ. Whole-property Real-value 10-year net 10120 70 

(200\) management for beef GA present value 

breeding property 

Meszaros et Genetic improvement Real-value Cumulative 1015 9 

at. (1999) of sheep flocks GA genetic gain 

over 20 years 

(Moore et Silviculture harvest Trinary GA Probability of 10\3 40 

al. (2000) scheduling with extinction 

preservation of 

wildlife 

Morimoto Growth control in BinaryGA Leaf length + 4 

and hydroponic tomatoes stem diameter 

Hashimoto (indicator of 

(1996) yield) 

Pabico et at. Determining cultivar BinaryGA Scaled L I - 1032 13 

(1999) coefficients of crop metric distance 

model 

Parmar et Machinery selection BinaryGA Net returns 4100 6 

al. (\996) for peanut farming above costs 

Parsons Silage harvesting BinaryGA Total feeding 109 21 

(\998) scheduling costs 

#EA: Evolutionary Algorithm; GA: Genetic Algorithm; ES: Evolution Strategy 
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Popn. Gener- Repli- Parent Replac. Recombination Mutation 

size ations cates selection strategy Type Probability Type Probability 

50- \04 _ 15 Roulette- Elitism Various 0.25 Various 0.001 

500 \05 wheel, -0.50 -0.25 

Toum.(2) 

20- 2xl05 \3 Strictly (IlH ) Various 0- Various 0-

50 random 0.33 0.60 

5xl05 

200, 127 - 4 Toum- Sub- Various 0.50 Various 0.02 

500 317 ament generat- -1.00 -0.50 

(2) ional 

-80% 

replaced 

300- 200 Sub- I-point Dynamic :::;0.20 

1000 generat-

ional 

- 50% 

replaced 

200 200 20 Roulette- Elitism 2-point 0.80 Random 0.10 
wheel choice 

(ranks) (of3) 

6 30 Strictly Elitism I-point 0.80 Single 0.80 

random bit 

flipped 

30 2000 5 Roulette- I-point 0.60 Bitflip 0.033 
wheel 

15 - 4- 10 Roulette 5%to I-point 0.60 Bitflip 0.10 

50 14 -wheel 100% 

(scores) replaced 

10, 40 10 Roulette- Elitism I-point Bitflip 0.10 

20 wheel 

(ranks) 
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Reference Problem type Type ofEA# Objective Search No. of 

function space params. 

Polheim Climate control for Real-value Profit (value of 51 

and horticultural GA and ES produce, less 

HeiBner greenhouses costs) 

(1997) 

Verryn Selection in tree BinaryGA Realised genetic 

and Roux breeding scheme gain 

(1998) 

Wang Calibration of model BinaryGA Residual 1021 7 

(1991 ) parameters variance 

Woodward, Grazing management Binary GA Farm gross 8 

SJ.R. (pers. for a New Zealand margin 

comm., sheep farm 

2000) 

#EA: Evolutionary Algorithm; GA: Genetic Algorithm; ES: Evolution Strategy 
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Popn. Gener- Repli- Parent Replac. Recombination Mutation 

size ations cates selection strategy Type Probability Type Probability 

200 Roulette Sub- discrete ES-style 0.02 

-wheel generat- and 
(ranks) ional- line 

90% 

replaced 
30- Roulette- Bitflip 
100 wheel 

(scaled 

scores) 

\00 50 10 Roulette- Generat 2-point 1.00 Bitflip 0.01 

wheel -ional 

(ranks) replace 

-ment 

50 60 0.60 Bitflip 0.10 
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